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Abstract

Optics with long focal length have been extensively used for shooting 2D cinema
and television, either to virtually get closer to the scene or to produce an aesthetical
e↵ect through the deformation of the perspective. However, in 3D cinema or
television, the use of long focal length either creates a “cardboard e↵ect” or causes
visual divergence. To overcome this problem, state-of-the-art methods use disparity
mapping techniques, which is a generalization of view interpolation, and generate
new stereoscopic pairs from the two image sequences. We propose to use more than
two cameras to solve for the remaining issues in disparity mapping methods.

In the first part of the thesis, we review the causes of visual fatigue and visual
discomfort when viewing a stereoscopic film. We then model the depth perception
from stereopsis of a 3D scene shot with two cameras, and projected in a movie
theater or on a 3DTV. We mathematically characterize this 3D distortion, and
derive the mathematical constraints associated with the causes of visual fatigue
and discomfort. We illustrate these 3D distortions with a new interactive software,
“The Virtual Projection Room”.

In order to generate the desired stereoscopic images, we propose to use image-
based rendering. These techniques usually proceed in two stages. First, the input
images are warped into the target view, and then the warped images are blended
together. The warps are usually computed with the help of a geometric proxy
(either implicit or explicit). Image blending has been extensively addressed in
the literature and a few heuristics have proven to achieve very good performance.
Yet the combination of the heuristics is not straightforward, and requires manual
adjustment of many parameters.

In this thesis, we propose a new Bayesian approach to the problem of novel view
synthesis, based on a generative model taking into account the uncertainty of the
image warps in the image formation model. The Bayesian formalism allows us
to deduce the energy of the generative model and to compute the desired images
as the Maximum a Posteriori estimate. The method outperforms state-of-the-art
image-based rendering techniques on challenging datasets. Moreover, the energy
equations provide a formalization of the heuristics widely used in image-based
rendering techniques. Besides, the proposed generative model also addresses the
problem of super-resolution, allowing to render images at a higher resolution than
the initial ones.

In the last part of this thesis, we apply the new rendering technique to the case
of the stereoscopic zoom and show its performance.

Keywords image-based-rendering, geometric uncertainty, Bayesian approach,
stereoscopic cinematography, 3DTV.





Résumé

Des optiques à longue focale ont été souvent utilisées dans le cinéma 2D et la
télévision, soit dans le but de se rapprocher de la scène, soit dans le but de produire
un e↵et esthétique grâce à la déformation de la perspective. Toutefois, dans le
cinéma ou la télévision 3D, l’utilisation de longues focales crée le plus souvent
un “e↵et carton” ou de la divergence oculaire. Pour résoudre ce problème, les
méthodes de l’état de l’art utilisent des techniques de transformation de la disparité,
qui sont une généralisation de l’interpolation de points de vue. Elles génèrent de
nouvelles paires stéréoscopiques à partir des deux séquences d’images originales.
Nous proposons d’utiliser plus de deux caméras pour résoudre les problèmes non
résolus par les méthodes de transformation de la disparité.

Dans la première partie de la thèse, nous passons en revue les causes de la fatigue
visuelle et de l’inconfort visuel lors de la visualisation d’un film stéréoscopique.
Nous modélisons alors la perception de la profondeur de la vision stéréoscopique
d’une scène filmée en 3D avec deux caméras, et projetée dans une salle de cinéma
ou sur un téléviseur 3D. Nous caractérisons mathématiquement cette distorsion
3D, et formulons les contraintes mathématiques associées aux causes de la fatigue
visuelle et de l’inconfort. Nous illustrons ces distorsions 3D avec un nouveau logiciel
interactif, la “salle de projection virtuelle”.

Afin de générer les images stéréoscopiques souhaitées, nous proposons d’utiliser
le rendu basé image. Ces techniques comportent généralement deux étapes. Tout
d’abord, les images d’entrée sont transformées vers la vue cible, puis les images
transformées sont mélangées. Les transformations sont généralement calculées à
l’aide d’une géométrie intermédiaire (implicite ou explicite). Le mélange d’images
a été largement étudié dans la littérature et quelques heuristiques permettent
d’obtenir de très bonnes performances. Cependant, la combinaison des heuristiques
proposées n’est pas simple et nécessite du réglage manuel de nombreux paramètres.

Dans cette thèse, nous proposons une nouvelle approche bayésienne au problème
de synthèse de nouveaux points de vue. Le modèle génératif proposé tient compte de
l’incertitude sur la transformation d’image. Le formalisme bayésien nous permet de
déduire l’énergie du modèle génératif et de calculer les images désirées correspondant
au maximum a posteriori. La méthode dépasse en termes de qualité les techniques
de l’état de l’art du rendu basé image sur des jeux de données complexes. D’autre
part, les équations de l’énergie fournissent une formalisation des heuristiques
largement utilisés dans les techniques de rendu basé image. Le modèle génératif
proposé aborde également le problème de la super-résolution, permettant de rendre
des images à une résolution plus élevée que les images de départ.

Dans la dernière partie de cette thèse, nous appliquons la nouvelle technique de
rendu au cas du zoom stéréoscopique et nous montrons ses performances.

Mots-Clés rendu basé image, incertitude geometrique, formalisme bayesien,
cinmatographie stereoscopique, TV3D.
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de l’Inria m’han ajudat molt durant la meva tèsi. Crec que un cop acabada la tèsi,
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Notation

In an e↵ort to provide a uniform notation with other computer vision references,
in this thesis we use the notation of the book Computer Vision - Algorithms and
Applications (Szeliski, 2010). To introduce the notation we reproduce its Section
1.5: A note on notation.

“For better or worse, the notation found in computer vision and multi-view
geometry textbooks tends to vary all over the map (Faugeras, 1993; Hartley and
Zisserman, 2004; Girod et al., 2000; Faugeras and Luong, 2004; Forsyth and Ponce,
2002). In this book, I use the convention I first learned in my high school physics
class (and later multi-variate calculus and computer graphics courses), which is that
vectors v are lower case bold, matrices M are upper case bold, and scalars (T, s)
are mixed case italic. Unless otherwise noted, vectors operate as column vectors,
i.e., they post-multiply matrices, Mv, although they are sometimes written as
comma-separated parenthesized lists x = (x, y) instead of bracketed column vectors
x = [x y]> . Some commonly used matrices are R for rotations, K for calibration
matrices, and I for the identity matrix. Homogeneous coordinates are denoted
with a tilde over the vector, e.g. x̃ = (x̃, ỹ, w̃) = w̃(x, y, 1) = w̃x̄ in P2. The cross
product operator in matrix form is denoted by [ ]⇥.”

Richard Szelisky, 2010.

In addition we introduce the following element notation for the components of
vectors and matrices. The coordinates of a vector x are notated with sub-indices:
x = (xx,xy,xz,xw). In the case where x has already a sub-index, e.g. xi, we use
the accolades to enumerate the components: xi = (xi[1],xi[2],xi[3],xi[4]). For a
matrix M , the first sub-index denotes the row and second sub-index the column,
thus Mxx is the element in the first row and column. For generic size matrices we
use the accolades notation M [i, j] to denote the element on the i’th row and j’th
column.
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Next we provide a table of used symbols for quick reference:

R set of real numbers

|a| =
p
a2 absolute value, a 2 R

x = (x, y) 2D image point

x̄ = (x, y, 1) 3D extended coordinates

x̃ = w̃(x, y, 1) 3D homogeneous coordinates

P 3⇥ 4 camera projection matrix

K 3⇥ 3 matrix with the camera intrinsic parameters

R 3⇥ 3 rotation matrix

t 3D translation vector

b baseline (or interaxial) between cameras

H convergence window distance

W convergence window width

b0 spectator interocular distance

H 0 screen to spectator distance

W 0 screen width

f focal length (in pixels units unless specified otherwise)

d disparity (in pixels units unless specified otherwise)

w width of the image in pixels

⌦i input image domain

� target image domain

⌧i : ⌦i ! � backward warp map from input image to target image

�i : � ! ⌦i forward warp map from target image to input image

mi : ⌦i ! {0, 1} visibility map of the input image

Vi 2 ⌦i set of the visible elements in ⌦i

"s sensor noise error

"g image noise error due to geometric uncertainty

�2

s sensor noise variance

�2

z variance of a depth estimate in geometric units

�2

g variance of an intensity measure due to geometric uncertainty

�2

n variance of a depth estimate along the surface’s normal vector

� : R ! R disparity mapping function

� : R ! R depth mapping function

� : R3 ! R3 world distortion function
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1
Introduction

1.1 Motivation

The term five major arts denoting architecture, sculpture, painting, music and
poetry, was introduced by the German philosopher Hegel in his “Lectures on
Aesthetics” (Hegel, 1835). In 1911, Ricciotta Canudo in his manifesto “The Birth
of the Sixth Art” (Canudo, 1993) claimed that cinema was a new art: a superb
conciliation of the Rhythms of Space (architecture, sculpture, painting) and the
Rhythms of Time (music and poetry) 1. For over a hundred years, cinematographers
have developed artistic ways to convey the Rhythms of Space with a 2 dimensional
motion picture, using well-known depth cues, e.g. perspective, depth of field, or
relative size of objects. Although Stereoscopic Cinema is as old as “2D cinema”,
its development has taken considerably more time, mainly due to the physiological
constraints of the human ocular system. To create the optical illusion of depth
from stereopsis, two slightly di↵erent images are shown to each eye. However, this
optical illusion may create visual fatigue and/or visual discomfort. Poor acquisition
or projection configurations deviating from the ideal ones lead to poor stereoscopic
viewing experience. Audience complaints about headaches or sickness after a
stereoscopic film projection have been common among the audience for decades.
With the arrival of the digital images, most problems arising at the acquisition stage
can be solved by post-processing the images. In addition, advances in the acquisition
devices, such as motorized rigs precisely controlling the cameras positions, as well
as advances in the projection technologies, have made possible to create pleasant
stereoscopic viewing experiences in 3D cinemas and televisions. Now that technical
progress has made 3D cinema and television a reality, artists should be able to
explore new narratives, which take advantage of the optical illusion of depth from
stereopsis in the storytelling.

In this thesis we review the causes of visual fatigue and visual discomfort and
perform a geometric study of the mathematical constraints associated to each

1

The cinema became the “Seventh Art” when Canudo added the “dance” as the sixth art, the

third Rhythmic art combining music and poetry. (Bordwell, 1997)
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phenomenon. These constraints define the limits for an artist to create content
which provides a pleasant viewing experience. In particular we focus on the case
of filming with two cameras equipped with long focal lengths optics. In 3D cinema
or television, the use of long focal length optics either creates a “cardboard e↵ect”
or causes ocular divergence. The “cardboard e↵ect” creates a poor stereoscopic
experience, whereas the ocular divergence is one of the well known causes responsible
for the visual fatigue. Because of this reason, artists are limited in the use of long
focal length optics and only use them in very few situations. Indeed, our study shows
that in most cases it is impossible to acquire images that create an interesting depth
from stereopsis and do not create visual fatigue.

At this point, an artistic question arises: what is the living sculpture the director
wants to create with the long focal length optics? To answer the question we
propose two di↵erent approaches to define the desired 3D e↵ect, according to two
scenarios where a long focal length optic is often used in 2D. In the first scenario
the long focal length optics are used to “get closer” to the scene. For some shots,
it may be physically very di�cult, or even impossible, to place the camera at a
precise location. For example, when filming animals in the wild, the presence of
the cameras could modify their behavior, or in sports, it is not allowed to place a
camera on the field while the game is at play. In the second scenario long focal
length optics are used to add perspective deformations to the space, thus distorting
the perceived geometry of the acquired 3D scene. This e↵ect provides an important
artistic tool for the directors, as they can convey emotions to the spectator with the
distortion of the perceived 3D world. An example of this geometric distortion in 2D
is the Vertigo E↵ect, Hitchcock Zoom or dolly zoom, created by Alfred Hitchcock
in 1958 in his feature film Vertigo. He compensated the backwards movement of
the camera by zooming in the image, to keep constant the size of a target object.
Objects in front and behind the target object are strongly distorted. The resulting
sequence perfectly conveys the terror of heights felt by the hero. The challenge
to generate proper stereoscopic images with long focal lengths is the motivation of
this thesis, and the research questions addressed in this manuscript belong to the
domain of “3D cinematography” (Ronfard and Taubin, 2007, 2010).

1.2 The Research Problem

To generate suitable stereoscopic images corresponding to these scenarios, images
are acquired first and then novel virtual views are rendered. The generic term for
these kind of techniques is Image-Based Rendering (IBR). These techniques proceed
mainly in two stages. In the first stage, the input images are warped into the target
view, i.e. the information acquired by the input images is transferred into the target
view. This transfer is usually done with the help of a geometric approximation of
the observed scene. This approximation is referred to as geometric proxy and it can
be implicit or explicit. The next stage is the fusion of the warped images. Should
a view be preferred over the others? Which criteria could help us to perform this
selection without human intervention? In this thesis we address these questions
and provide an answer.
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IBR has been an active field of research for the last two decades. Some heuristics
have been explored and proven to achieve very good results. Yet the combination
of these e↵ective heuristics is not straightforward and relies on some parameters.
These parameters present two main drawbacks. The first inconvenience is that
they are often adjusted depending on the content of the scene, thus requiring a
human intervention. The second drawback is that the parameter magnitudes do
not represent physical units, as they weight penalties or energy terms. Hence, it is
di�cult to choose and justify their values.

In this thesis a new Bayesian approach to the problem of novel view synthesis
is proposed. A new generative model is contributed, which takes into account the
uncertainty of the image warps in the image formation model. As the warps are
given by an explicit or implicit geometric proxy, they have physical units. The
Bayesian formalism allows us to deduce the energy of the generative model and
to compute the desired images as the Maximum a Posteriori estimate. Moreover,
the energy equations provide a formalization of the heuristics widely used in IBR
techniques. The benefits of this formalization are multiple. First, the formalization
provides insights on which physical phenomena could lie behind each heuristics, thus
allowing to state the novel view synthesis problem in an intrinsically parameter-
free form: the parameters of the proposed method have physical units and can be
measured from the input images. Furthermore, the use of the geometric uncertainty,
allows the method to adapt to di↵erent qualities of geometric proxy, automatically
leveraging the contributions of each camera. Areas where the geometric proxy is
more reliable are automatically treated di↵erently from areas where the geometric
proxy is less reliable without human intervention. Besides, the proposed generative
model addresses the problem of super-resolution, allowing to render images at a
higher resolution than the initial ones. The method outperforms state of the art
image-based rendering techniques on challenging datasets.

The research questions addressed in this thesis can be summarized as follows.
The first question is: how can we generate stereoscopic shots with long focal length?
The answer to this question leads to the next research question: given N warped
views of a scene, how can we automatically blend the multiple shots into one? The
answer to the second question allows us to formulate and answer our last research
question: how should we place the cameras to generate the stereoscopic shots with
long focal length?

1.3 Contributions

The main contributions of this thesis go beyond the state of the art of stereoscopic
cinematography and IBR and they are the following:

The Virtual Projection Room. A new visualization tool, allowing to better
understand the 3D distortions of a 3D scene when acquired with a stereoscopic
pair of cameras and projected in a projection room in front of a spectator.
The proposed approach presents a 3D synthetic view of the spectator in the
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projection room. The user can see the perceived depth from stereopsis. So, the
virtual projection room provides an interactive manipulation of the acquisition and
projection parameters, thus allowing a fast exploration of the di↵erent acquisition
and projection configurations. This contribution is shown in Sec. 3.3. Moreover,
the virtual projection room was integrated into the software Dynamic Stereoscopic
Previz that is presented in Appendix A. This shooting simulator was used in the
actual shooting of a stereoscopic short film: “Endless Night”.

A new Bayesian approach formalizing the principles of Image Based
Rendering. The key theoretical contribution of the proposed method is the
systematic modeling of the error introduced in the Lambertian image formation
process via the inaccuracy in the estimates of the geometric proxy. We call this
inaccuracy depth uncertainty, referring to the depth estimates from the input
images. In addition to this error, we also consider the image sensor noise, commonly
modeled as Gaussian. We extensively analyze the theoretical implications of the
obtained energy, discussing the formal deduction of the state of the art heuristics
from our model. This work provides the first Bayesian formulation explicitly
deriving the heuristics of Buehler et al. (2001). The equations obtained using the
Bayesian formalism have the advantage of being essentially parameter-free.

From a practical point of view, we numerically evaluate the performance of
our method for two cases. First we address a simplified camera configuration
where all viewpoints are in a common plane, which is parallel to all image planes.
This configuration is known as the Lumigraph (Gortler et al., 1996). For this
configuration we compare our results to the best existing method within the
Bayesian framework (Wanner and Goldluecke, 2012). In a second set of experiments
we deal with the generic, unstructured configuration as proposed in Buehler et al.
(2001). For this configuration we implemented the generic extension of Wanner and
Goldluecke (2012) as well as the method proposed by Buehler et al. (2001). We
compare our results to both methods.

Experimental results show that we achieve state of the art results with regard to
objective measures on public datasets. Moreover, we are also capable of addressing
super-resolution, capitalizing on the general framework established in Wanner and
Goldluecke (2012). The new model is not without a price, since its optimization is
less straightforward. However, existing methods allow us to overcome this di�culty.

The Stereoscopic Zoom. The last contribution of this thesis is to analyze
the 3D distortions that arise when acquiring stereoscopic images with long focal
lengths and to propose two approaches to overcome these distortions. The proposed
approaches are an answer to the actual intentions of the directors in the use of the
long focal lengths in the 2D cinema or television: to get closer to the scene or to add
perspective deformations of the acquired scene. For the scenario where the director
wants to get closer to the scene we propose to generate virtual novel views at the
desired camera locations (Sec. 5.1). For the scenario where the director wants to
introduce perspective deformations we propose to distort the acquired 3D world, in
order to generate the desired stereoscopic images (Sec. 5.2).
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Both methods benefit from the Bayesian approach to the IBR problem. We
present a scenario where both approaches can be considered and discuss its
advantages and limitations.

1.4 Thesis Outline

Chapter 2. In Chapter 2 the factors leading a human to perceive depth are
reviewed. The monoscopic and stereoscopic depth cues, as well as the physiological
constraints leading to visual discomfort and visual fatigue are presented.

Chapter 3. In Chapter 3 a geometric approach to the depth perception from
stereopsis is presented. The concepts described in Chapter 2 are mathematically
formalized and a new visualization tool, the “virtual projection room”, is presented.
This software allows to better understand the complex transformation between the
acquired 3D scene and the 3D scene perceived by the spectator in the projection
room.

Moreover, the geometric distortions arising when changing the projection configu-
ration are illustrated, and the state of the art approaches that address the problem
are reviewed. The geometric distortions arising when using acquisition cameras
with long focal lengths are also shown, and it is explained why the limitations
of the existing methods prevent to obtain the desired results. Finally, two IBR
approaches to create stereoscopic images with long focal lengths are derived in this
chapter.

Chapter 4. In Chapter 4 the existing IBR methods are reviewed. Then our novel
generative model for the image formation process is presented and its associated
energy deduced. The performance of this new model is demonstrated by means of
two sets of experiments. First, the simplified camera setup corresponding to the
Lumigraph (Gortler et al., 1996) is considered. In this camera setup the obtained
equations are simpler. Then the general case corresponding to the Unstructured
Lumigraph (Buehler et al., 2001) is analyzed. The creation of the necessary input
is detailed and the performance of the proposed method illustrated. The benefits
and limitations of our own approach are discussed, and to conclude the chapter,
the relation of the proposed approach with the desirable properties of Buehler et al.
(2001) is analyzed.

Chapter 5. In Chapter 5 two approaches to generate stereoscopic images with
long focal lengths are presented. The first is based on the director’s intention to
get closer to the scene while the second is based on the director’s intention to
create perspective distortions of the scene. A scenario where both approaches can
be used is presented and the actual camera positions are deduced according to the
IBR approach presented in Chapter 4. The Chapter is concluded with a discussion
of the advantages and limitations of both approaches.
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Chapter 6. Chapter 6 closes this thesis by summarizing the main contributions.
The impact of our work and some of the learned lessons are discussed. Finally,
leads on how future work can address the remaining issues are proposed.



2
Depth Perception and Visual Fatigue

In this chapter we briefly present the process of depth perception when viewing
stereoscopic moving pictures, which has been extensively covered in the literature
(Gibson, 1950; Lipton, 1982; Todd, 2004; Devernay and Beardsley, 2010). We review
the depth cues leading to the perception of depth, the consequences of contradictory
or inconsistent depth cues, and the causes leading to visual fatigue when viewing
stereoscopic motion images. The goal of this chapter is to illustrate how the
perceptual human factors make the acquisition and projection of stereoscopic images
a much more constrained problem than the acquisition and projection of traditional
2D moving pictures.

2.1 Depth Cues

In this section we review the visual features producing depth perception which are
known as depth cues. They can be grouped in two classes, the monoscopic depth
cues, present in a 2D representation of the world, and the stereoscopic depth cues,
arising when using a binocular system.

2.1.1 Monoscopic Cues

Lipton (1982) proposes seven monoscopic depth cues which are well know to encode
the depth in a 2D representation. We illustrate them in Fig. 2.1.

Retinal Image Size Larger retinal images tell us that the object is closer,
because objects closer to the eye are seen as larger.

Perspective or Linear Perspective Objects diminish their size as they recede
from the observer. For example, parallel railroads seem to converge at the horizon.
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Interposition or Overlapping One object in front of another prevents us from
seeing the one behind. A teacher in front of the blackboard cuts part of the view of
the blackboard and must, therefore, be closer to the student than the blackboard.

Aerial perspective Atmospheric haze provides the depth cue of aerial perspec-
tive. In a very hazy day, the mountain is barely visible in the glare of the haze
illuminated by the setting sun. The haze intervening between the observer and the
mountain makes the mountain look far away.

Light and Shade Cast shadows provide an e↵ective depth cue, as does light
coming from one or more directions modeling an object.

Textural Gradient This cue is discussed at great length by Gibson (1950). The
leaves of a tree are clearly discernible up close, but from a distance the texture of
the leaves becomes less detailed.

Motion Parallax When the point of view changes, objects near the viewer have
a larger image displacement than objects being far away.

Depth of Field Although it is usually forgotten in the list of monoscopic depth
cues (Lipton, 1982), the depth of field or retinal image blur is a monoscopic depth
cue (Held et al., 2010). Objects with di↵erent blur size are perceived at di↵erent
depths.

Lipton (1982) also claims that the accommodation, the muscular e↵ort involved in
focusing, could provide a feedback or proprioceptive mechanism for gauging depth.
However, it is not clear from psychophysics experiments whether this should be
considered as a depth cue or not (Devernay and Beardsley, 2010).

2.1.2 Stereoscopic Depth Cues

The fact that we are looking at a scene using our two eyes brings two additional
physiological depth cues (Lipton, 1982): convergence and disparity.

Convergence The lens of each eye projects a separate image of objects on each
retina. In order for these to be seen as a single image by the brain, the central
portion of each retina must “see” the same object point. The muscles responsible for
this convergence, the inward or outward rotation of the eyes, may provide distance
information.

Disparity When eyes converge on an object in space, it is seen as a single image,
and all other objects, in front or behind the point of convergence can be seen to
be double images. The disparity is the di↵erence between the two retinal image
positions of a scene point.
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Interposition Perspective Light and shade

Textural gradient Relative size Aerial perspective

Motion parallax

Fig. 2.1: Illustrations of the seven monoscopic depth cues described by Lipton (1982):
interposition, perspective, light and shade, textural gradient, relative size, aerial perspective and
motion parallax. Images reproduced from Lipton (1982) and Devernay and Beardsley (2010).

These steresocopic depth cues are used by the perception process called stereopsis,
giving a sensation of depth from two di↵erent viewpoints. The term “stereopsis”
was first described by Sir Charles Wheatstone in Wheatstone (1838). In Fig. 2.2
we illustrate the perceived depth from stereopsis.

All those depth cues, one by one, and in their combination, allow us to perceive
depth. Special care should be taken when creating new steresocopic views. The
depth “described” individually by each depth cue should be coherent with the depth
described by the others, as formulated by Lenny Lipton: “Good 3D is not just about
setting a good background. You need to pay good attention to the seven monocular
cues (. . . ) Artists have used the first five of those cues for centuries. The final
stage is depth balancing.” Conflicting or inconsistent depth cues can lead to a poor
viewing experience.

2.1.3 Conflicting Depth Cues

Conflicting depth cues arise when two di↵erent cues provide depth information
pointing in di↵erent directions. In 1754 William Hogarth provided a very nice
illustration (see Fig. 2.3) showing the importance of coherent depth cues by
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?

Fig. 2.2: Perceived depth from stereopsis. From left to right, the 3D point is perceived, in font
of the screen (positive disparity), at the depth of the screen (zero disparity) and behind the screen
(negative disparity). In the last configuration, ocular divergence arises: the optical rays intersect
behind the spectator.

contradiction. Let us focus on two examples of conflicting depth cues, involving
the treeline in the center of the image behind the bridge.

The first conflict we are interested in, is the interposition of the flag with the
trees. Because of the relative size of objects, the trees seem to be far compared to
the flag. But the trees interpose the flag, thus they should be in front of the flag.

The second conflict is a contradiction between relative size and perspective.
Because of the perspective in the tree line, the left trees seem to be farther away
than the right trees. However, as the left trees are bigger in size, they seem to be
enormous compared to the right ones.

Similar issues arise when the stereopsis depth cue is in contradiction with other
depth cues.

The window violation is a well known issue (Mendiburu, 2009) arising when the
depth from stereopsis and interposition are in contradiction. When an object in
front of the screen is cut by the border of the image, the stereopsis depth cue tells
us that the object is in front of the screen border. However, the border “cuts”
the object, thus it must be in front of it. A way to solve this issue is the use of
floating windows (Mendiburu, 2009). By adding a black border to an image, the
perceived depth from stereopsis of the image border can be “pushed” forward. Thus
the interposition is coherent with the depth from stereopsis.

Reverse stereo is another well know issue where the sterescopic depth cues are
in contradiction with the monoscopic depth cues. The pseudoscope invented by Sir
Charles Wheatstone is a device which switches the viewpoints of both images. The
sterescopic cues are then reversed, while the monoscopic cues are preserved. The
viewer experiences a 3D perception of the scene, but depth cues are in conflict. For
example, similarly to the tree line in Fig. 2.3, the relative size of objects indicates
a depth cue which is in contradiction with the (reversed) perceived depth from
stereopsis.
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Fig. 2.3: “Whoever makes a DESIGN without the Knowledge of PERSPECTIVE will be liable to
such absurdities as are shown in this Frontispiece.” William Hogarth 1754.

2.1.4 Inconsistent Depth Cues

While two conflicting depth cues indicate contradictory depths, inconsistent depth
cues indicate di↵erent amounts of depth in the same direction (Devernay and
Beardsley, 2010). While they are in general less disturbing than conflicting depth
cues, they can lead to a poor stereoscopic experience and they may even spoil
the sensation of reality (Yamanoue et al., 2006). Two well known e↵ects creating
inconsistent depth cues are the cardboard e↵ect and the puppet-theater e↵ect.

The cardboard e↵ect arises when some depth from stereopsis is clearly perceived
between the elements on the observed scene, but the elements themselves lack depth.
They appear as flat, or as a drawn on a cutout cardboard. This e↵ect is common
in anaglyph comic books of the fifties, because each element was drawn in 2D, and
then horizontally o↵set to give an illusion of 3D. Although elements are perceived at
di↵erent depths, they are still flat 2D drawings. In this case the inconsistency arises
from the monoscopic depth cues (light and shade, relative size, perspective, . . . ) and
the depth from stereopsis: the viewer perceives some depth from stereopsis between
the elements; the monoscopic cues point in the same direction but the depth from
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stereopsis of the elements themselves is reduced.

The puppet theater e↵ect or pinching e↵ect is another disturbing e↵ect, where
elements of the scene look unnaturally small (Yamanoue et al., 2006). This e↵ect
is driven by an inconsistency between the monoscopic depth cue relative size of
objects and the perceived depth from stereopsis. The depth estimated from the the
relative size of an object in the foreground and an object in the background is not
consistent with the perceived depth from stereopsis. This e↵ect appears when the
elements of the scene su↵er a size distortion which is di↵erent depending on the
depth of the object. Note that in general, it is only possible to perceive the depth
from the monoscopic cue relative size of objects for known objects. As stated by
Yamanoue et al. (2006), no one can evaluate the size of an object that has never
been seen before. However, once the viewer gets familiar with the size of the object,
the e↵ect can (and will) arise.

As noted by Devernay and Beardsley (2010), both e↵ects (cardboard e↵ect
and puppet-theater e↵ect) can be easily avoided if one is in total control of the
shooting configuration, including the camera placement. However, if the shooting
configuration is constrained, the e↵ects may appear.

2.2 Visual Comfort and Visual Fatigue

Visual fatigue has been for certain the main cause of the failure of stereoscopic
cinema in the past century. Visual fatigue, also named eyestrain, can manifest in
a wide range of visual symptoms, e.g. tiredness, headaches, dried mucus, or tears
around the eyelids among others (Ukai and Howarth, 2008). Visual comfort is used
interchangeably with visual fatigue in the literature, but, as stated by Lambooij
et al. (2007), a distinction should be made. Visual fatigue can be measured as
a decrease of performance of the human visual system, whereas visual comfort is
subjectively self-reported.

In this section we review the sources of visual fatigue when viewing stereoscopic
motion images, which are today well known. They can be listed as stereoscopic
image asymmetries (Kooi and Toet, 2004) the vertical disparities (Allison, 2007;
Lambooij et al., 2007), the crosstalk (Yeh and Silverstein, 1990; Kooi and Toet,
2004), the horizontal disparity limits (Yeh and Silverstein, 1990), and the vergence-
accomodation conflict (Ho↵man et al., 2008; Shibata et al., 2011; Banks et al.,
2013). They can be arranged in two groups. In the first one we have the
stereoscopic image asymmetries, the vertical disparities and the crosstalk which
constrain the mechanical systems (acquisition and projection) but do not constrain
the stereoscopic artistic choices, i.e. the depth of a scene element. In the other group
we have the vergence-accommodation conflict and the horizontal disparity limits
which constrain the depth at which a scene element can be projected to, or the
relative depth between scene elements. In this work we refer to those stereoscopic
artistic choices as the stereoscopic mise-en-scene.

The results obtained by Kooi and Toet (2004) show that almost all stereoscopic
image assymetries seriously reduce the visual comfort. Those asymmetries arise
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Fig. 2.4: The stereoscopic comfort zone. Reproduced from Mendiburu (2009).

from imperfections, either in the acquisition setup (camera alignment, optics
mismatch, camera desynchronization, . . . ) or in the projection setup (projector
alignment, optics mismatch, projector desynchronization, . . . ). They are of course
very important and need to be accounted for. However, they rely on purely
mechanical or software technical solutions (e.g. camera and projector alignment)
which are addressed in the literature (Zilly et al., 2011, 2010). They do not constrain
the depth of the scene elements. Similarly, vertical disparities in the acquired images
can be eliminated with image rectification (see Sec. 3.1.5), and do not constrain the
stereoscopic mise-en-scene either.

The crosstalk (or crossover or ghosting) arises from the inability of the projection
system to properly filter the left and right images. Light of the left image leaks
to the image seen by the right eye, and vice-versa, thus creating artifacts known
as ghosts. The crosstalk has an artistic impact on how elements at di↵erent depth
should be lighted (Mendiburu, 2009), but does not a↵ect the range of depths where
the element can be displayed at.

In our work we are interested with the sources constraining the stereoscopic mise-
en-scene: the vergence-accomodation conflict and horizontal disparity limits. In
Fig. 2.4 we illustrate a scheme of the comfortable depth perception zones, usually
called “comfort zones”.



14 Chapter 2. Depth Perception and Visual Fatigue

2.2.1 Vergence-Accomodation Conflict

When looking at an object in the real world, our eyes toe in to converge at the
distance of the observed object. This distance is known as the vergence distance. At
the same time, our eyes accommodate to bring the image of the object at that depth
to sharp focus. This distance is known as the focus distance. As both distances
are equal in natural viewing, convergence and accommodation are neurally coupled
(Fincham and Walton, 1957). This coupling allows an increased response speed:
accommodation and vergence are faster with binocular vision than with monocular
vision (Cumming and Judge, 1986).

However, when viewing stereoscopic motion images, the viewer accommodates at
the screen distance, while its ocular system convergence is done at the distance
where the scene object is presented. Because of the strong coupling in the
visual system, this di↵erence creates a conflict, which is known as the vergence-
accommodation conflict. The resolution of the conflict by the human visual system
may create visual fatigue (Ho↵man et al., 2008; Lambooij et al., 2009; Shibata et al.,
2011; Banks et al., 2013).

This phenomenon has been studied in optometry and ophthalmology. The goal
is to establish the zone of clear single binocular vision (ZCSBV), which is the set
of vergence and focal stimuli that the patient can clearly see while maintaining
the binocular fusion. Shibata et al. (2011) and Banks et al. (2013) provide a
very complete overview of the historical evolution of the estimation of the ZCSBV,
from the first measures from Donders in 1864 and the Percival’s zone of comfort
established in 1892, to the nowadays measured boundaries. To our knowledge, they
contribute the most recent experimental results establishing the boundaries of the
vergence-accomodation conflict, that we reproduce in Fig. 2.5.

Two important points arise from the vergence-accommodation conflict. The first
is that the amount of 3D space available is limited by the comfort zone. Placing
scene elements out of the comfort zone will most probably create visual fatigue
and the viewer may experience diplopia, which is the inability to fuse stereoscopic
images. The second remark is that the comfort zone depends on the viewing distance
of the viewer. Moreover, as the viewing distance is often related to the size of the
screen (see Sec. 3.2.7), we can extrapolate that the depth limits of the comfort zone
are di↵erent depending on the size of the screen. Not only the 3D space available
is limited, but the limits change with the size of the screen.

2.2.2 Horizontal Disparity Limits

Although the horizontal disparity limits are related to the vergence-accomodation
conflict, they do not represent the same thing. We saw that the studies addressing
the vergence-accomodation conflict focused on the estimation of the ZCSBV.
However, the human visual system is not capable to fuse at the same time objects
at very di↵erent depths. Even if a foreground and a background objects are inside
the ZCSBV, fusing both of them at the same time may be di�cult.
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Fig. 2.5: Figure reproduced from Shibata et al. (2011). The graphics represent the empirically
estimated vergence-accomodation conflict limits. In the left graphic, distance is represented in
Diopter units (D), which are the inverse of meters: D =

1

m

. In the right graphic the same graphic
is presented in metric units. The boundaries of the vergence-accommodation conflict depend on
the viewing distance. The dashed horizontal lines represent typical viewing distances for mobile
devices, desktop displays, television, and cinema. The comfort zone gets smaller as the viewing
distance decreases.

Mendiburu (2009) introduces three practical concepts: the stereo real state
denoting the amount of 3D space available in the projection room, the depth bracket
denoting the portion of 3D used in a shot or sequence, and the depth position
denoting the placement of the depth bracket inside the stereo real state. Yano
et al. (2004) showed that stereoscopic images with a bigger depth bracket than
the human depth of field cause visual fatigue. This finding is coherent with the
strong relation between the horizontal disparity limits and the human depth of field
boundaries found by Lambooij et al. (2009). Although exact values might slightly
di↵er depending on the work, it is commonly accepted that the depth of field guides
the horizontal disparity limits.

Although using an excessive depth bracket may create visual fatigue, some artistic
e↵ects may ask an excessive disparity range. A common practice in the stereoscopic
film industry is to create a depth script or depth chart, a time line with the depth
bracket of the shots and sequences (see Fig. 2.6). In order to compensate for an
excessive depth bracket, a low 3D sequence, or “rest area”, can allow the audience’s
visual system to recover from the e↵ort (Mendiburu, 2009; Liu et al., 2011).

The last, but not less important disparity limit, is the ocular divergence
(Spottiswoode et al., 1952). If a viewer tries to fuse a disparity on the screen bigger
than the human interaxial, their eyes will diverge (see Fig. 2.2). Images creating a
low divergence angle (up to 1�) can still be fused (Shibata et al., 2011), although
they may create visual fatigue if divergence occurs for a long time. Images creating
a divergence angle higher than 1� are likely to create diplopia (Shibata et al., 2011).
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Fig. 2.6: An example of depth chart. Figure reproduced from Mendiburu (2009).

2.3 Summary

In this chapter we have seen that shooting a stereoscopic movie involves more
constraints than in the traditional 2D cinema. Not only the monoscopic depth cues
must be coherent, but the supplementary stereoscopic depth cues must point in
the same direction. We have introduced the window violation, the puppet-theater
e↵ect, and the cardboard e↵ect as well as the vergence-accomodation conflict and
the horizontal disparity limits. In the next chapter we formalize these concept into
mathematical constraints.



3
Stereoscopic Filming: a Geometric

Study

In this chapter we present a geometric approach to the depth perception from
stereopsis. We first introduce the mathematical models and notations used in the
rest of the chapter. Then we mathematically formalize the concepts described
in the previous chapter and derive the constraints on the acquisition setup to
avoid the visual discomfort and visual fatigue. We present a new visualization
tool, the “virtual projection room”, allowing to better understand the complex
transformation between the acquired 3D scene and the 3D scene perceived by
the spectator in the projection room. We illustrate the geometric distortions
arising when changing the projection configuration, and review the state of the
art approaches that address the problem. Those methods introduce the concept
of disparity mapping, a clever function allowing to reduce those distortions. We
analyze the impact of the disparity mapping function into the mathematical
formalization of the constraints. We also illustrate the geometric distortions arising
when using acquisition cameras with long focal lengths, and explain why the
limitations of the existing methods prevent to obtain the desired results. We derive
two image-based rendering approaches to create stereoscopic images with long focal
lengths.

3.1 3D Transformations and Camera Matrices

In this section we introduce the mathematical models and notations associated to
projective geometry applied to computer vision. We introduce the pinhole camera
model, its associated 3D to 2D camera projection matrix, and the reconstruction
matrix, a 3D to 3D transformation. We then consider the two camera case and
introduce the epipolar geometry. We detail the configuration of two rectified
cameras, which is key to stereoscopic filming and projection.

This section assumes some familiarity of the reader with projective geometry
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applied to computer vision. For a much more detailed introduction we refer the
reader to the reference books Faugeras (1993), Forsyth and Ponce (2002), Hartley
and Zisserman (2004) and Szeliski (2010). We choose the latest (Szeliski, 2010) as
reference book for our notations.

3.1.1 3D Translations and Rotations

A 3D translation in space is given by a 3 component vector t, and we write it as
x0 = x+ t, or as a 3⇥ 4 matrix product in the form

x0 = [I|t]x̄, (3.1)

where I is the 3⇥ 3 identity matrix, and x̄ = (x, y, z, 1) is the augmented vector
of x = (x, y, z).

A 3D rotation in space is described using a 3⇥3 matrix R, an orthogonal matrix
(R> = R�1) with detR = 1. This matrix can be parametrized using either Euler
angles, the exponential twist or unit quaternions. The Euler angles are three angles
(✓x, ✓y, ✓z), each one describing a 3 rotation around the x-, y- and z-coordinate axis.
The exponential twist is parametrized by a rotation axis n̂ and an angle ✓, and the
unit quaternions are often written as q = (qx, qy, qz, qw). The use of Euler angles
is in general a bad idea (Faugeras, 1993; Diebel, 2006) because it depends on the
order in which the transforms are applied. The choice between the exponential twist
and the unit quaternions is often driven by the application.

A 3D rotation and translation is also known as a 3D rigid body motion or 3D
Euclidean transformation. We write it as x0 = Rx+ t, or

x0 = [R|t]x̄. (3.2)

3.1.2 Perspective 3D to 2D Projection

There exist several types of 3D to 2D projections: orthographic, scaled orthography,
para-perspective, perspective and object-centered (Szeliski, 2010). In our work we
use perspective, since this more accurately models the behavior of real cameras. In
Fig. 3.1 we illustrate a perspective projection of a 3D point x = (x, y, z) into an

x

u

z

y

c

camera center

image plane

principal axis

y/z

1

Fig. 3.1: Scheme of the perspective projection. Illustration adapted from Hartley and Zisserman
(2004). A 3D point x = (x, y, z) is projected onto the image plane point u = (

x

z

, y

z

, z

z

). The
distance between the image plane and the camera center c is considered to be 1.
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image plane. The 3D point is projected onto the image plane by dividing it by its
z component. We obtain the 3D point x0 = (xz ,

y
z ,

z
z ). We note the homogeneous

coordinates of the projected point with a tilde over the vector, e.g. x̃0 = (x̃, ỹ, w̃) =
w̃ (xz ,

y
z , 1). As the third coordinate of the 3D point x0 is always 1, x0 can be

considered as the extension into homogeneous coordinates of a 2D point u: ū = x0.
In homogeneous coordinates the perspective projection of the 3D point x = (x, y, z)
has a linear form

ũ =

0

BB@

1 0 0 0

0 1 0 0

0 0 1 0

1

CCA x̄. (3.3)

We drop the last component of x, thus, once the 3D point is projected, it is not
possible to recover its distance to the camera.

3.1.3 Pinhole Camera Model

In this manuscript we use the pinhole camera model and represent it with its camera
matrix P . An extensive description can be found in Chapter 6 of Hartley and
Zisserman (2004). The basic idea is that a camera establishes a mapping between
the 3D points in the world x 2 R3 and the 2D image points u 2 R2 in pixel units.

The camera projection matrix (Hartley and Zisserman, 2004) is a 3 ⇥ 4 matrix
P , such that

ũ = P x̄. (3.4)

The camera projection matrix P can be decomposed into the matrices K and
(R|t):

P = K(R|t). (3.5)

The 3 ⇥ 3 matrix K is called the intrinsic camera parameters and the matrix
R and the vector t define the extrinsic camera parameters. The 3 ⇥ 3 matrix R
is the rotation of the camera with respect to the 3D world. The 3 dimensional
vector c is the position of the optical center in the 3D world. The 3 dimensional
vector t = �Rc is the position of the origin of the world in the camera frame. The
transformation (R|t) transforms a 3D point in the world frame into a 3D point in the

x

u

z

y

x

c
p

camera center

image plane

principal axis

0

Fig. 3.2: Scheme of the pinhole camera model projection. Illustration adapted from Hartley and
Zisserman (2004). A 3D point x is projected onto the pixel coordinates u. 0 is the origin of the
pixel coordinates and p is the principal point of the camera in pixel coordinates.
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camera frame. The homogeneous coordinates normalization does the perspective
projection into the projection image plane. The 3 ⇥ 3 matrix K then transforms
points on the projection image plane, into the pixel domain. A convention (Szeliski,
2010) is to write the intrinsic parameters K in an upper-triangular form:

K =

0

BB@

fx s px

0 fy py

0 0 1

1

CCA . (3.6)

The entry s encodes any possible skew between the sensor axes due to the sensor
not being mounted perpendicular to the principal axis. In our work we usually set
s = 0. Although pixels are normally rectangular instead of square (Forsyth and
Ponce, 2002), for the sake of simplicity in this work we assume them to be square.
The pixels coordinates have then the same scale factor f : fx = f and fy = f .
The 2 dimensional vector p = (px, py) denotes the optical center expressed in pixel
coordinates. It is usually set to the half of the width and height of the image, but
in our work it will be useful to consider a decentered optical center, as we will see
in Sec. 3.1.5.

Hence in this work we use the intrinsic camera parameters in the form

K =

0

BB@

f 0 px

0 f py

0 0 1

1

CCA . (3.7)

3.1.4 Epipolar Geometry Between Two Cameras

Two cameras is the minimal vision system allowing to infer the depth of the observed
scene from the images. If we are capable to associate two points in the images, we
can deduce the 3D location of the imaged point by triangulation. The geometry
defined by two cameras is known as epipolar geometry. Let us introduce the basic
definitions.

Let us consider two cameras and the 3D point q as illustrated in Fig. 3.3. The
projection of the optical center c

0

into the camera 1, is known as the epipole e
1

.
The projection of the optical center c

1

into the camera 0, is known as the epipole
e
0

. The pixel x on the camera c
0

, projects to an epipolar line segment in the
other image. The plane defined by the optical centers c

0

, c
1

and the pixel x (or
the 3D point q) is known as the epipolar plane. For a given pixel x, the epipolar
lines li define the range of possible locations the pixel may appear at in the other
image. An interesting configuration is when the epipolar lines are horizontal in
the image. This configuration is called rectified configuration. For example, an
advantage of this configuration is that it allows the search algorithms to perform
a one dimensional search instead of a bi-dimensional search in the image. The
pre-warp to transform two generic cameras into a rectified configuration is know as
the camera rectification and its computation is well known in the literature (Loop
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and Zhang, 1999; Fusiello et al., 2000; Faugeras and Luong, 2004; Hartley and
Zisserman, 2004; Szeliski, 2010). Fig. 3.4 illustrates the obtained results with the
method proposed by Loop and Zhang (1999). A two camera configuration where
both cameras are looking in a similar direction is also known as stereoscopic camera
or simply stereo. In these configurations, cameras are usually addressed as the left
and the right cameras.

3.1.5 Two Rectified Cameras

Let us now construct two projection camera matrices P l and P r, with their intrinsic
and extrinsic parameters (K l,Rl, tl) and (Kr,Rr, tr). The sub-indexes l and r
stand for the left and the right cameras respectively. The parameters of two rectified
cameras are related. Two rectified cameras have the same orientation in the world,
their rotation matrices are equal: Rl = Rr. Without loss of generality we can
assume them to be the identity matrix Rl = Rr = I (by counter-rotating the
world with R�1). We can also assume that the left camera is centered at the origin
of the 3D world: cl = 0, and thus tl = �Rc = 0. The segment between the
cameras two optical centers is parallel to the image plane, and aligned with the
x-coordinate. The distance between the optical centers of the cameras is usually
called baseline. In the rest of the manuscript we note the baseline with the scalar
b. Thus we can write cr = (b, 0, 0), and tr = (�b, 0, 0). We have all the extrinsic
parameters of the rectified cameras. The intrinsic camera parameters are fl, fr, pl

and pr. Two rectified cameras have the same image plane, so their focal length is
the same fl = fr = f . Although the choice of the principal points is not constrained
by the rectified configuration, a convenient choice is to set the same y-coordinate q
for both principal points. The choice of the x-coordinate of the principal point has
an impact on the stereo camera system. Our principal points are pl = (pl, q) and
pr = (pr, q).

Fig. 3.3: Figure reproduced from Szeliski (2010) describing the epipolar geometry between two
cameras.



22 Chapter 3. Stereoscopic Filming: a Geometric Study

a) b)

Fig. 3.4: We illustrate an example of image rectification with the algorithm from Loop and Zhang
(1999). a) the input pair of images with a set of epipolar lines. b) rectified image pair so that
epipolar lines are horizontal and in vertical correspondence. Figure reproduced from Szeliski (2010).

The obtained left camera parameters are

K
l

=

2

664

f 0 pl

0 f q

0 0 1

3

775 , R
l

=

2

664

1 0 0

0 1 0

0 0 1

3

775 , t
l

=

2

664

0

0

0

3

775 , (3.8)

and the camera matrix P l = K l(Rl|tl) is

P
l

=

2

664

f 0 pl 0

0 f q 0

0 0 1 0

3

775 . (3.9)

The right camera parameters are

K
r

=

2

664

f 0 pr

0 f q

0 0 1

3

775 , R
r

=

2

664

1 0 0

0 1 0

0 0 1

3

775 , t
r

=

2

664

�b

0

0

3

775 , (3.10)

and the camera matrix P r = Kr(Rr|tr) is

P
r

=

2

664

f 0 pr �bf

0 f q 0

0 0 1 0

3

775 . (3.11)

3.1.6 The Disparity

The term disparity was first introduced by Marr and Poggio (1976). It was used
to describe the di↵erence in location of corresponding features seen by the left and
right eyes. This initial description is still used today in 2015 and has been extended
to the di↵erence in location of corresponding features seen by two cameras. The
di↵erence between the right and left x-coordinates of the projected points is called
disparity. This di↵erence is signed, and we chose the sign convention adopted in the
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3D cinema (Mendiburu, 2009): the right camera image point minus the left camera
image point. Given a 3D point in space x = (x, y, z) and a stereoscopic camera
system defined by P

l

and P
r

, the image disparity is

d(x) = (P rx̄)x � (P lx̄)x (3.12)

= pr �
bf

z
� pl. (3.13)

Let us note that the disparity value only depends on the depth of the point x,
its third component xz = z. All 3D points at a plane parallel to the image plane
at depth z have the same disparity. Moreover, points at depth z = 1 have a finite
disparity d

0

= pr � pl. We write the disparity as

d(x) = d
0

� bf

z
. (3.14)

All points on a plane at distance z = bf
d
0

have disparity d = 0. This depth is
known as the convergence distance of the stereo system and we note it H:

H =
bf

d
0

. (3.15)

The convergence distance is usually adjusted by shifting the principal points pl
and pr of one or both cameras, so that rays through the optical center and the
image center intersect at a depth H. For practical purposes, the magnitude H is
sometimes preferable over d

0

, so we write the latter as a function of the first:

d
0

=
fb

H
. (3.16)

Parallel Rectified Stereo Cameras The case where d
0

= 0 and H = 1 is
known as the parallel rectified stereo camera. The disparity is given by

d = �bf

z
. (3.17)

Moreover, by considering b = 1 and f = 1 and reversing the sign, we obtain the
“standard” interpretation in computer vision of the normalized disparity (Okutomi
and Kanade, 1993) as the inverse depth

d =
1

z
. (3.18)

Assymetric and Symmetric Rectified Stereo Cameras It is sometimes
practical to work with convergent rectified stereo cameras (Sec. 3.2 and Chapter 5).
Their extrinsic parameters are defined by their position and translation in the world
(R, c) as well as their baseline b and convergence distance H. Their focal length is
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f and the di↵erence between their principal points pl and pr is given by Eq. 3.16.
If we choose pl = 0 and pr = d

0

, the projection camera matrices P are

P l =

2

664

f 0 0 0

0 f 0 0

0 0 1 0

3

775 and P r =

2

664

f 0 bf
H �bf

0 f 0 0

0 0 1 0

3

775 . (3.19)

This configuration is not symmetric as we chose the left camera to be on the
origin of the world. Sometimes, in order to apply symmetry reasoning (Sec. 5.1),
we use a symmetric parametrization of the stereo cameras:

P
l

=

2

664

f 0 � bf
2H

bf
2

0 f 0 0

0 0 1 0

3

775 and P
r

=

2

664

f 0 bf
2H � bf

2

0 f 0 0

0 0 1 0

3

775 . (3.20)

Disparity units Let us note that the di↵erent representations of the disparity
have di↵erent units. Let us assume z is in metric units. The disparity representation
d = 1

z from Eq. 3.18 has inverse to metric units. The representation d = d
0

� bf
z

from Eq. 3.13 has pixel units, as b has metric units and pl, pr and f have pixel units.
In some cases (Sec. 3.2) it is convenient to have disparity values as a fraction of the
image width. Let w be the width of the image in pixel units. To obtain normalized
disparity values without units we only need to normalize d

0

and the focal f with w:

d =
d
0

w
� f

w

b

z
. (3.21)

3.1.7 3D to 3D Transformations: the Reconstruction Matrix

As we saw in Sec. 3.1.2, after a 3D to 2D projection we loose the depth information.
In some cases it is important to project a 3D point into the image plane, but to
keep the depth information. This is possible by using a full-rank 4x4 matrix P̃ , and
not dropping the last row in the P matrix. As with the matrix P , the extended
matrix can be decomposed as

P̃ = K̃E, (3.22)

where E is a 3D rigid-body (Euclidean) transformation and K̃ is the full-rank
calibration matrix. The matrix P̃ is used to map directly from 3D homogeneous
world coordinates q̃W = (xW , yW , zW , wW ) to image coordinates plus disparity,
x = (x, y, 1, d), thus keeping the depth information in the projection process. We
note

x̃ / P̃ q̃W , (3.23)

where / indicates equality up to scale. In this case the normalization is done with
the third element of the vector to obtain the normalized form x = (x, y, 1, d). The
4x4 matrix P̃ defines a 3D homography of space.
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In general, when using the 4 x 4 matrix P̃ , we have the freedom to choose the
last row to whatever suits our purpose (Szeliski, 2010). The choice of the last row
of P̃ defines the mapping between depth and the last coordinate of the projected
point d. For example, the “standard” normalized disparity as inverse depth d = 1

z
(Okutomi and Kanade, 1993), is given by

K̃ =

 
K 0

0> 1

!
and E =

 
R t

0> 1

!
. (3.24)

We will use this disparity parametrization in Chapter 4.

When we work with a pair of rectified cameras we prefer to use the disparity
defined by the di↵erence of the two first rows of P l and P r (Eq. 3.13). In this case
the obtained matrix is called reconstruction matrix (Devernay, 1997) and has the
form

P̃ =

0

BBBB@

f 0 0 0

0 f 0 0

0 0 1 0

0 0 bf
H �bf

1

CCCCA
. (3.25)

The decomposition into the 3D rigid-body transformation and the full-rank
calibration matrix is

K̃ =

 
K 0

0, 0, bfH �bf

!
and E =

 
R t

0> 1

!
. (3.26)

The inverse of the reconstruction matrix The 4x4 matrix P̃ is full-rank
and therefore invertible. The inverse P̃

�1

transforms points with disparity x =
(x, y, 1, d) to 3D points in the world q̄W = (xW , yW , zW , 1). The relation between the
disparity and the depth can be computed by inverting the disparity equations 3.13
and 3.18. If we use the disparity representing the pixel di↵erence from Eq. 3.13 we
obtain

z =
bf

(d
0

� d)
. (3.27)

Or if we use the normalized version from Eq. 3.21 we obtain

z =
bf

(d
0

� wd)
. (3.28)

The inverse of the reconstruction matrix will be used in Sec. 3.2.1 to determine the
perceived depth from stereopsis.
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3.2 Stereoscopic Filming: Acquisition and Projection

Stereoscopic movie-making process is a complex task involving mainly two stages:
the acquisition and the projection. In the first stage the geometry is acquired
with two cameras. In the projection stage, the two acquired images are projected
onto the same screen in front of the spectator. An optical illusion is created: the
3D acquired scene is transformed into the 3D scene perceived by the spectator.
The optical illusion is highly dependent on the acquisition and the projection
parameters. Spottiswoode et al. (1952) wrote the first essay studying how the
geometry is distorted by the “stereoscopic transmission” (i.e. acquisition and
projection). Further studies (Woods et al., 1993) extended these works and also
computed spatial distortions of the perceived geometry. Masaoka et al. (2006)
from the NHK conducted a similar study proposing a software tool allowing to
predict the spatial distortions arising with a set of given acquisition and projection
parameters. Devernay and Beardsley (2010) showed that a non-linear geometric 3D
transformation exists between the 3D acquired scene and the 3D scene perceived
by the spectator based on depth from stereopsis. This non-linear geometric 3D
transformation can introduce 3D distortions creating visual fatigue and visual
discomfort. As we saw in chapter 2, many depth cues play a role in the depth
perception of the spectator. However, the study conducted by Held and Banks
(2008), shows that the computation of the perceived depth from stereopsis provides
a good prediction on the actual depth perceived by the audience. In the next section
we present a geometrical study characterizing the 3D transformations and the 3D
distortions of the perceived depth from stereopsis.

3.2.1 Perceived Depth from Stereopsis

Let us introduce the notation characterizing at the same time an acquisition stereo
system, as well as a projection stereo system. In Fig. 3.5 we illustrate and summarize
the notation. In the acquisition setup, the distance between the optical centers of
the camera b is called baseline, interocular or interaxial. The cameras convergence
distance is H (see Sec. 3.1.6), and we name the parallel plane to the images at
distanceH the convergence plane. The intersection of the camera visibility frustums
with the convergence plane defines the convergence window, and we note its width
W . With an abuse of notation, W is usually referred to as the convergence plane
width. In the projection setup, the distance between the eyes of the spectator is b0.
The distance between the spectator and the screen where the images are projected
is H 0 and the width of the screen is W 0. For the rest of our work we assume all
parameters b, b0, H,H 0,W and W 0 to be greater than 0.

Let us use the asymmetric rectified configuration of Sec. 3.1.6. With this
parametrization, the focal of the cameras f and the acquisition convergence
disparity d

0

, in pixel units, are given by the relations

f = w
H

W
and d

0

=
fb

H
. (3.29)
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H
z

Cl Cr

W

P

b

Ml Mr

W ⇥ d

H 0
z0

C 0
l C 0

r

W 0

P 0

b0

M 0
l M 0

r

W 0 ⇥ d

Symbol Acquisition Projection

Cl, Cr camera optical center eye optical center

P physical point of the scene perceived 3D point

Ml, Mr image points of P screen points

b baseline humain eye distance

H convergence distance screen distance

W convergence plane size screen size

z real depth perceived depth

d left-right disparity (as a fraction of W )

Fig. 3.5: Parameters describing the shooting geometry and the movie theater configuration
(reproduced from Devernay and Beardsley (2010)).

Analogously, the focal of the spectator f 0 and the projection convergence disparity
d0
0

, in pixel units, are given by the relations

f 0 = w
H 0

W 0 and d0
0

=
f 0b0

H 0 . (3.30)

By plugging the relations from Eq. 3.29 into Eq. 3.21 we obtain the normalized
disparity

d =
b

W

(z �H)

z
. (3.31)

Inversely, given a normalized disparity d0 = d and the projection parameters b0,
H 0 and W 0, and plugging the relations from Eq. 3.30 into Eq. 3.28, we obtain the
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perceived depth from stereopsis z0

z0 =
H 0

1� W 0
b0 d

. (3.32)

The relationship between the true depth in the 3D scene and the perceived depth
from stereopsis in the projection room can be written by combining Eq. 3.31 and
Eq. 3.32, as proposed by Devernay and Beardsley (2010). The obtained relationship
is given by

z0 =
H 0

1� W 0
b0 (

b
W

z�H
z )

. (3.33)

In some cases it will be more convenient to re-write this expression as:

z0 =
zb0H 0W

z(b0W � bW 0) + bHW 0 . (3.34)

3.2.1.1 Canonical Setup

The shooting configuration

b0W = bW 0 or
b

b0
=

W

W 0 (3.35)

creates a linear relation between z0 and z:

z0 = z
H 0

H
. (3.36)

This configuration is known as the Canonical setup (Devernay and Beardsley, 2010).

Furthermore, by choosing H0

H = 1 the perceived depth z0 is equal to z. Although
this configuration may seem interesting, we will see (Sec. 3.2.4) that it may introduce
important 3D distortions of the perceived scene.

3.2.1.2 Homothetic Setup

A more convenient configuration is

b0

b
=

H 0

H
=

W 0

W
, (3.37)

known as the homothetic configuration (Devernay and Beardsley, 2010).

3.2.2 Perceived Position from Stereopsis

In our work we are not only interested in the perceived depth from stereopsis,
but also in the general 3D perceived position from stereopsis. As we will see,



3.2. Stereoscopic Filming: Acquisition and Projection 29

some phenomena responsible for visual fatigue or visual discomfort depend not
only on the perceived depth, but also on the perceived position. To model the
3D transformation we use the reconstruction matrix mapping 3D points to image
points plus disparity, and its inverse, mapping image points plus disparity to 3D
points (Sec. 3.1.7).

The projection of the 3D scene points into image point plus disparity is given
by the filming parameters H,W, b. Let us write the filming reconstruction matrix
P̃ f from Eq. 3.25 using the acquisition parameters. In this case we consider a
normalized focal without units H

W , so that image coordinates are normalized. A 3D
point in the scene x = (x, y, z) is projected into a normalized image coordinate plus
disparity u = (u, v, 1, d) with P̃ f x̄ = ũ where

P̃ f =

2

66664

H
W 0 0 0

0 H
W 0 0

0 0 1 0

0 0 b
W �bH

W

3

77775
. (3.38)

The image point is obtained by normalizing with the third element of ũ:

u =

2

66664

x
z
H
W

y
z
H
W

1
b
W

(z�H)

z

3

77775
. (3.39)

The reconstruction matrix of the projection system P̃ p can be obtained by
replacing b,H and W with b0, H 0 and W 0 in P̃ f :

P̃ p =

2

66664

H0

W 0 0 0 0

0 H0

W 0 0 0

0 0 1 0

0 0 b0

W 0 �b0 H
0

W 0

3

77775
. (3.40)

In this case we are interested in the inverse of P̃ p, mapping a normalized image
point with disparity u = (u, v, 1, d) into a 3D point x0. The determinant of the
matrix P̃ p is �b0(H

0

W 0 )3, which is only zero if either H 0 or b0 are zero. As we assumed

that all parameters b0, H 0,W 0 > 0, the matrix P̃ p is invertible and its inverse is

P̃
�1

p =

2

66664

W 0

H0 0 0 0

0 W 0

H0 0 0

0 0 1 0

0 0 1

H0 � W 0

b0H0

3

77775
. (3.41)
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The 3D homography H̃ transforming a 3D point in the acquired scene x into a

3D point in the perceived scene x0 is given by the product of P̃
�1

p with P̃ f :

H̃ =

2

66664

HW 0

WH0 0 0 0

0 HW 0

WH0 0 0

0 0 1 0

0 0 1

H0 � bW 0

b0H0W
bHW 0

b0H0W

3

77775
. (3.42)

The perceived 3D point in homogeneous coordinates is

x̃0 =

2

66664

xHW 0

WH0

yHW 0

WH0

z
z(b0W�bW 0

)+bHW 0

b0H0W

3

77775
. (3.43)

By normalizing with the fourth component we obtain the coordinates of the
perceived position from stereopsis x0 = (x0, y0, z0), with

x0 = x
b0HW 0

z(b0W � bW 0) + bHW 0 , (3.44)

y0 = y
b0HW 0

z(b0W � bW 0) + bHW 0 , (3.45)

and

z0 =
zb0H 0W

z(b0W � bW 0) + bHW 0 . (3.46)

The perceived depth is, as expected, equal to Eq. 3.34.

Now that we have written the 3D homography between the filmed 3D scene and
the perceived 3D from stereopsis, let us mathematically characterize the phenomena
responsible for visual fatigue and visual discomfort. When possible, we deduce the
shooting baseline b avoiding such e↵ects.

3.2.3 Ocular Divergence Limits

Ocular divergence happens when both eyes look at the screen with a negative angle
between them. Both viewing rays intersect behind the spectator, as we illustrate
in Fig. 2.2. The mathematical condition of eye divergence is then z0 < 0.

Lets us recall Eq. 3.34 :

z0 =
zb0H 0W

z(b0W � bW 0) + bHW 0 . (3.47)

The numerator can not be negative because z, b0,W,H 0 are all positive. The
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denominator can be negative

bHW 0 + z(b0W � bW 0) < 0. (3.48)

If b0W � bW 0 � 0 there is no divergence. If b0W � bW 0 = 0 then z ! +1 =)
z0 ! +1. The equality establishes the biggest non-divergence baseline:

b = b0
W

W 0 . (3.49)

This configuration is the Canonical Setup from Eq. 3.35.

3.2.3.1 Divergence Depth

If b0W �W 0b < 0, then when

z ! � bHW 0

(b0W � bW 0)
=) z0 ! +1. (3.50)

Elements at z > � bHW 0

(b0W�bW 0
)

cause eye divergence in the projection room. We note
this magnitude as the divergence limit

z
Div

= � bHW 0

(b0W � bW 0)
. (3.51)

3.2.3.2 Perceived Depth of Infinity

If b0W � bW 0 > 0, then eye divergence does not happen and

z ! +1 =) z0 ! b0H 0W

(b0W � bW 0)
. (3.52)

Elements at z = +1 are transformed into the finite location

z0(1) =
b0H 0W

(b0W � bW 0)
. (3.53)

Solving Eq. 3.53 for b we obtain the baseline mapping z = +1 to the desired
z0(1). We obtain

b = b0
W

W 0
z0(1)�H 0

z0(1)
. (3.54)

This baseline is important to avoid the vergence-accommodation conflict (see
Sec. 2.2.1). Perceived 3D points farther than this limit may cause visual fatigue.

Example: a small display Let us assume the projection parameters are fixed
(b0, H 0,W 0), as well as the shooting convergence plane width and distance (H,W ).
When looking at a small display, e.g. a mobile phone or tablet, at a distance of
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H 0 = 1

3

m (⇡ 0.33 m), elements perceived farther than z0 = 1

2.25m (⇡ 0.44 m) cause
visual discomfort (Banks et al., 2013). When creating stereoscopic content for a
small display of width W 0 = 0.20m, elements at infinity should not be projected
farther than z0 ⇡ 0.44 m. By substituting in Eq. 3.54 we obtain

b ⇡ 0.065 W
(0.44� 0.33)

0.44 ⇥ 0.2
= 0.08125W. (3.55)

Note the important magnification (400%) compared to the baseline obtained with
the Canonical Setup (bW 0 = b0W ):

b ⇡ 0.065

0.2
W = 0.325 W. (3.56)

A comment on diverging configurations A human is capable to perform
ocular divergence within a small range (0.5 � 1�)(Shibata et al., 2011). Some
stereographers take advantage of this fact and use a divergent configuration (b >
b0 WW 0 ) to map the farthest object in the scene, farther away than infinity in the
projection room. Although there is no substantial di↵erence for those far objects,
as they are still perceived at infinity, this configuration with a bigger baseline allows
to increase the roundness factor around the depth of the screen (Eq. 3.65). In the
next section (3.2.4) we introduce the roundness factor.

3.2.4 Roundness Factor

The scene distortions in the perceived scene come from di↵erent scene magni-
fications in the fronto-parallel directions (width and height), and in the depth
direction. Spottiswoode et al. (1952) defined the shape ratio as the ratio between
depth magnification and width magnification. Mendiburu (2009) and Devernay and
Beardsley (2010) use the term roundness factor. The roundness factor at a depth
z is defined as the ratio between the depth variation in the perceived space with
respect to the scene depth (@z

0

@z ) and the apparent size variation with respect to

space (@x
0

@x , or @y0

@y ):

⇢(z) =
@z0

@z
@x0
@x

(z). (3.57)

The partial derivatives of the perceived position with respect to the x and y
coordinates of the acquired position (Eqs. 3.44 and 3.45) are:

@x0

@x
(z) =

b0HW 0

z(b0W � bW 0) + bHW 0 , (3.58)

@y0

@y
(z) =

b0HW 0

z(b0W � bW 0) + bHW 0 , (3.59)

@x0

@y
(z) = 0 and

@y0

@x
(z) = 0. (3.60)
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Note that for scene elements at the convergence distance z = H, their apparent
size ratio simplifies to W 0

W .

The partial derivative of the perceived depth with respect to z (Eq. 3.34) is

@z0

@z
=

bb0HH 0WW 0

(z(b0W � bW 0) + bHW 0)2
. (3.61)

Plugging @x0

@x from Eq. 3.58 and @z0

@z from Eq. 3.61 into Eq. 3.57 we obtain the
expression of the roundness of an element at depth z:

⇢(z) =
bH 0W

z(b0W � bW 0) + bHW 0 . (3.62)

In Fig. 3.6 we illustrate the di↵erent values of the roundness factor.

Interesting configurations Let us analyze some interesting cases. In the
Canonical Setup 3.35 the roundness is constant for all depths:

⇢(z) =
H 0

H

W

W 0 =
H 0

H

b

b0
. (3.63)

In the Homothetic Setup (Eq. 3.37) the roundness is 1 for all depths:

⇢(z) = 1. (3.64)

Independently of the chosen configuration, at the screen plane depth z = H, the
roundness of the perceived depth is independent of the screen width W 0:

⇢(H) =
b

b0
H 0

H
. (3.65)

3.2.4.1 Cardboard E↵ect

The cardboard e↵ect arises when the roundness of a scene element is smaller than
0.3 (Mendiburu, 2009). Elements of the scene are perceived in depth, but they are
themselves flat, as if they were drawn on a cutout cardboard (Sec. 2.1.4). Let us
rewrite the roundness equation 3.62 by writing z as a fraction of H: z = �H. Then
we obtain

⇢(�) =
H 0

H

bW

(�(b0W � bW 0)� bW 0)
. (3.66)

With this factorization, the term H0

H can be seen as an amplitude coe�cient. If
we keep b and W constant, but we increase H (the distance of the cameras to the
convergence plane), the roundness gets smaller. This is known to be the cardboard
e↵ect, introduced for example by the use of long focal lengths (Sec. 3.5).
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a) b) c) d)

Fig. 3.6: Scheme of the roundness factor. a) Shooting two spheres. b) obtaining a roundness
factor equal to 1. c) obtaining a roundness factor smaller than 1. d) obtaining a roundness factor
bigger than 1.

3.2.5 Relative Perceived Size of Objects

The 3D transformation of the acquired scene into the perceived scene, may not
only modify the perceived depth of the elements, but also its perceived size. It
is known that a perspective transformation makes big objects being far away to
appear small on the screen. Two similar objects with di↵erent sizes on the screen
lead the audience to think they are far apart. This is known as the relative size
depth cue (see Sec. 2.1.1). If this depth cue is inconsistent with the perceived depth
from stereopsis, it may introduce a perception distortion called puppet theater e↵ect
(Sec. 2.1.4).

Yamanoue et al. (2006) propose a geometric predictor Ep of the puppet-theater
e↵ect, based on the depth perception from stereopsis. They first define the apparent
magnification of an object M(z) as the ratio between its actual size and the
perceived size. An object of size w is seen in the projection room as having a
size of w0 = M(z)w. In our terms we write this magnification factor as

M(z) =
@x0

@x
(z). (3.67)

Then they define the predicted amount of puppet-theater e↵ect Ep, as the
ratio between the magnification factors at a foreground depth (M(zf )) and the
magnification factor at a background depth (M(zb)). With our notation we write
this magnitude as

Ep(zf , zb) =
@x0

@x (zf )
@x0
@x (zb)

. (3.68)

If the predictor value Ep is close to one, there is no puppet-theater e↵ect, while if
the predictor value is smaller, the 3D projected scene may create the puppet-theater
e↵ect. In their subjective test they found out that a subject of interest appears to



3.2. Stereoscopic Filming: Acquisition and Projection 35

have its normal size when Ep 2 (0.75, 1.25). Whereas outside this range, subjects
reported a distorted scale of the scene objects. One of their straightforward claims
is that, if the magnification factor is independent of z, e.g. in the Canonical setup,
then there is no puppet-theater e↵ect.

Similarly Devernay and Duchêne (2010) define the image scale ratio �0, which is
how much an object placed at depth z seems to be enlarged with respect to objects
in the convergence plane (z = H). The magnification of objects at the convergence
plane is W 0

W and thus

�0(z) =
W 0

W

1
@x0
@x (z)

. (3.69)

To obtain a one parameter expression of the puppet-theater e↵ect predictor we
can chose a reference object to be at zf = H. Then for an object at any depth
z, (greater or less than H) we can compute the puppet-theater e↵ect predictor Ep.
Eq. 3.68 becomes

Ep(H, z) =
1

�0(z)
, (3.70)

and using Eq. 3.58 we obtain

Ep(z) =
z(b0W � bW 0) + bHW 0

b0HW
. (3.71)

3.2.6 Changing the Projection Geometry

It is well known that projecting a sterescopic movie on di↵erent screens with
di↵erent screen sizes and di↵erent viewing distances produces di↵erent depth
perceptions (Spottiswoode et al., 1952; Lipton, 1982; Mendiburu, 2009; Devernay
and Beardsley, 2010; Chauvier et al., 2010). To control and to adapt the disparity
to the viewing situation is of central importance to the widespread adoption of
stereoscopic 3D (Sun and Holliman, 2009).

A stereoscopic film is shot for a given projection configuration, usually named
target screen. Displaying it in a di↵erent projection room, with a di↵erent screen
width from the original target screen, creates distortions of the perceived depth
from stereopsis. For example, when projecting a film in a movie theater and on
a 3D television the perceived depth will be di↵erent. If the film is projected on
a bigger screen than the target screen, it may even cause eye divergence, as on-
screen disparities are scaled proportionally to the scale of the screen width. When
the disparities are bigger than the human interocular, ocular divergence occurs
(Sec. 3.2.3). In Fig. 3.7 we illustrate the modification of the perceived depth from
stereopsis when the projection screen is scaled. Note that a change in W 0 a↵ects
the perceived depth from stereopsis (Eq. 3.33), the roundness (Eq. 3.62), the ocular
divergence limit (Eq. 3.51) and the relative perceived size of objects (Eq. 3.71).

Changing the viewing distance H 0 of the spectator also modifies the perceived
depth from stereopsis (Eq. 3.33) and the roundness (Eq. 3.62). However it does
neither a↵ect the ocular divergence limit (Eq. 3.51) or the relative perceived size of
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?

x2 x4x1

Fig. 3.7: Impact of the screen size to the depth perception. The perceived depth from stereopsis
changes when the width of the screen changes. If the on-screen disparity is bigger than the human
interaxial, it may cause eye divergence.

Fig. 3.8: Impact of the distance to the screen (H 0) in the depth perception. The perceived depth
from stereopsis changes when the distance to the screen changes. The roundness of the object scales
linearly with the spectator distance to the screen (Eq. 3.62).

objects (Eq. 3.71). In Fig. 3.8 we illustrate the impact of the viewing distance H 0

to the depth perception, and in particular, to the roundness factor.

3.2.7 The Ideal Viewing Distance

As we just saw, the perception of depth may significantly vary depending on the
projection configuration H 0 and W 0. However, it seems reasonable to assume that
there is a relation between both. If the screen is bigger, the spectator sits farther
away, whereas if the screen is small, the spectator sits (or stands) closer to the
screen. This idea was already stated by Spottiswoode et al. (1952), claiming that the
standard distance from spectator to screen should be from 2W 0 to 2.5W 0. Recent
recommendations from SMPTE (2015) and THX (2015) establish the acceptable
viewing distances from a screen by fixing a range of viewing angles. For example,
the SMPTE STANDARD 196M-2003 defines the maximal recommended horizontal
viewing angle of 30� (SMPTE, 2003), whereas the THX certified screen placement
states the maximal acceptable horizontal viewing angle of 36� for cinema theaters
(THX, 2015a). THX recommendations also state that the best viewing distance
for an HDTV setup is defined by a viewing angle of 40� (THX, 2015b). A viewing
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angle of 36� establishes the relationship between H 0 and W 0

1.6W 0 = H 0. (3.72)

Although there is a variability on the ideal viewing distance and no unanimous
decision can be found across the di↵erent recommendations, it is possible to
extrapolate a rough dependency between W 0 and H 0. If we follow the THX
recomendations for big screens, and take into account the nearest distance at which
we can properly focus (around 0.33m), one could define the viewing distance as a
function of the screen width as follows:

H 0(W 0) =

8
><

>:

1.6 W 0 if A < W 0

some smooth function if B  W 0  A

0.33 if W 0 < B.

(3.73)

The parameter A is somewhere around 1 to 2m where the preferred viewing
distance may be bigger than the proposed 1.6 W 0. To view a 1m width TV at a
1.6m distance seems way to near. The parameter B is somewhere around a tablet
device width (20 � 30cm), where one does not hand-hold the device anymore and
sets it on a table to sit farther away than 33cm.

An interesting study pointing in the same direction (Banks et al., 2014) shows
that the preferred viewing distance of a spectator when looking at an image of width
W , is around 1.42 W . This study was performed with images with sizes from 15cm
to 1m. The preferred viewing distance linearly scales with the width of the image.
Most interestingly, the preferred viewing distance corresponds to the field of view
of a 50mm focal length. In the cinema, this focal length is known as providing the
most natural perception of the scene.

In our work we use the hypothesis that a function H 0(W 0) exists. Although the
function might not be exact, it provides a mean to reduce the 2 dimensional space
(H 0,W 0) into a one dimensional manifold parametrized by W 0: (W 0, H 0(W 0)).

3.3 The Virtual Projection Room

Understanding the 3D distortions introduced by the 3D transformation between
the acquired scene and the perceived scene is not straightforward, because of the
non-linear transformation from Eq. 3.33. While top view schemes illustrating the
di↵erent distortions in very schematic configurations are helpful (Figs. 3.7, 3.8, 3.6
or 2.2), it is di�cult to see how a generic 3D scene is distorted when acquired and
projected with a set of parameters b,H,W and b0, H 0,W 0. Masaoka et al. (2006)
proposed a visualization tool to explore the spatial distortions, providing a top view
of the perceived depth from stereopsis (see Fig. 3.9). The acquisition and projection
parameters can be adjusted and the 3D distortions are displayed.

We propose to go further and create a virtual projection room in a 3D environment
(Blender, 2015), allowing to see the 3D deformations of a generic 3D scene when
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Fig. 3.9: Illustrations reproduced from Masaoka et al. (2006). The non-linear 3D distortions
between the acquired scene and the perceived scene are shown as a top view of the projection room.
Elements in the scene are characterized by 2d pictures.

acquired and projected with a set of parameters b,H,W and b0, H 0,W 0. Compared
with previous work we provide an interactive 3D view of the distortions, as scene
elements can be animated, and the acquisition camera parameters adjusted over
time.

The virtual projection room is a new visualization tool allowing to interactively
see the perceived depth from stereopsis by the spectator. On one side we have a
3D model of the scene and the acquisition cameras. On the other side we have
the spectator on his couch at home (or in the cinema) looking at the projected
images. Both the acquisition geometry (b,H,W ) as well as the projection geometry
(b0, H 0,W 0) can be adjusted at will. Fig. 3.10 and 3.11 illustrate the acquisition
and projection stages. We use the virtual projection room to illustrate with a
series of figures the 3D distortions described in Sec. 3.2. We use a “Toy Scene”
consisting of a woman and two spheres and a stereoscopic pair of cameras acquiring
the scene. In Fig. 3.10 we illustrate the acquisition of the scene. In Fig. 3.11 we
illustrate the perceived depth from stereopsis as we project the acquired images in
the virtual projection room describing a home cinema. In Fig. 3.12 we illustrate
the 3D deformations arising when shooting with a deviating from the Canonical
Setup (Sec. 3.2.1.1), i.e. b < b0 WW 0 and b > b0 WW 0 . In Fig. 3.13 we illustrate
the 3D deformations arising when projecting the images on di↵erent screen sizes
and viewing distances (Sec. 3.2.6). In Fig. 3.14 we illustrate the cardboard e↵ect
(Sec. 3.2.4.1). In Fig. 3.15 we illustrate the puppet theater e↵ect (Sec. 3.2.5).

The virtual projection room is integrated into the stereoscopic shooting simulator
Dynamic Stereoscopic Previz (Pujades et al., 2014), that we briefly present in
Appendix A. The Dynamic Stereoscopic Previz (DSP) is a video game where the
goal is to shoot a stereoscopic film. The user first models and animates a 3D scene
using the Blender Game Engine. Then the user places a stereoscopic rig in the
scene and adjust the shooting parameters at will (b,H,W ). The user also sets the
parameters of the virtual projection room (b0, H 0,W 0), and sees how the acquired
images are perceived by the spectator. The virtual projection room is updated in
real-time, as the user changes the shooting parameters. The shooting simulator
was tested during the actual production of the short stereoscopic movie “Endless
Night”. In Appendix A we illustrate one shot of the movie with the DSP in action.
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Fig. 3.10: Acquisition of the Toy Scene. The woman is at 2.5m of the camera, and the woman’s
shoulders are 0.5m wide. The spheres have a diameter of 0.5m. The blue one is 0.5m in front of
the woman, and the red one 0.5m behind. The acquisition parameters are: the baseline b = 65mm,
the convergence distance H = 2.5m (the depth of the woman), and the convergence window width
W = 2.5m. A yellow window shows the convergence window, to help the operator validate the
parameters. Left: a perspective view. Right: a top orthogonal view.

Fig. 3.11: Projection of the Toy Scene in the virtual projection room. The acquisition configuration
is b = 65mm, H = 2.5m and W = 2.5m (Fig. 3.10). The projection parameters are b0 = 65mm
(human interocular of the spectator), H 0

= 2.5m (distance of spectator to screen), and W 0
= 2.5m

(width of the screen). Because the virtual projection room configuration matches the acquisition
configuration, no 3D distortion is introduced. The 3D transformation is the Identity transformation.
Left: perspective view. Center: top orthogonal view. Right: lateral orthogonal view.

Fig. 3.12: 3D distortions appearing with the modification of the acquisition baseline b. The
projection configuration is b0 = 65mm, H 0

= 2.5m and W 0
= 2.5m. Top row: hypo-stereo

configuration with b = 45mm. Bottom row: hyper-stereo configuration with b = 85mm. Left:
perspective view. Center: top orthogonal view. Right: lateral orthogonal view.
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Fig. 3.13: Changing the projection geometry. Acquisition configuration b = 16.25mm, H = 3.75m
and W = 2.5m intended for the target screen b0 = 65mm, H 0

= 15m and W 0
= 10m. Top row:

viewing the acquired images on the target screen. Center row: viewing the acquired images on a
smaller screen b0 = 65mm, H 0

= 7.5m and W 0
= 5m. Bottom row: viewing the acquired images

on a bigger screen b0 = 65mm, H 0
= 18m and W 0

= 12m. In the left column (a perspective
view) it is di�cult to see how the di↵erent projection configurations a↵ect the perceived depth.
However, in the center and right columns (top and lateral orthogonal views) we can see how the
depth perception is a↵ected. When viewing the images in the target screen (top row), spheres are
perceived as spheres. Reducing the width of the screen (middle row) reduces and distorts the depth
perception: spheres look flatter. Increasing the width of the screen (bottom row) increases and
distorts the depth perception: the spheres are no longer spheres. Moreover, ocular divergence may
appear.

3.4 Adapting the Content to the Width of the Screen

As we saw in Sec. 3.2.6, projecting a stereoscopic film with a di↵erent projection
configuration from the target configuration, modifies the depth perception and may
introduce geometric distortions. In order to avoid those distortions, novel view
synthesis techniques propose to adapt the content of the images. The literature in
this domain is extensive. We briefly review the most popular methods.

Methods adapting the content to the width of the screen usually involve three
steps. First the disparity between the left and right view is computed. The obtained
disparity map might be dense, i.e. every pixel of the image has a depth value, or
sparse, i.e. only a set of image correspondences are computed. The second step is
the computation of a disparity mapping function, usually noted with �(d) : R ! R,
converting the disparity values from the original stereo pair into the desired disparity
values for the novel view. The last step is to render a novel view, so that the final
stereoscopic pair has the mapped disparity values.

Disparity Computation Dense disparity maps are computed with stereo
methods (Scharstein and Szeliski, 2002), and the computation of disparity maps
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Fig. 3.14: The cardboard e↵ect. Projection is always done with the same configuration: b0 =

65mm, H 0
= 15m and W 0

= 10m. First and second rows: acquisition with Homothetic Setup
b = 16.25mm, H = 3.75m, W = 2.5m. The woman and the spheres are perceived without distortion.
Third and fourth rows: The camera moves backwards and changes the focal length to obtain the
same convergence window. Acquisition parameters b = 16.25mm, H = 7.5m, W = 2.5m. The
roundness of the woman and the spheres is divided by 2. They are not “round” anymore. Fifth
and sixth rows: The camera moves backwards and changes the focal length to obtain the same
convergence window. Acquisition parameters: b = 16.25mm, H = 15m and W = 2.5m. The
roundness of the woman and the spheres is divided by 4. The cardboard e↵ect increases, the woman
and the spheres look “flatter” to the spectator.
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Fig. 3.15: The puppet theater e↵ect. The acquisition configuration is b = 77mm, H = 2.5m and
W = 2.5m. The projection configuration is b0 = 77mm, H 0

= 15m and W 0
= 10m. The blue sphere

and the red sphere have exactly the same size in the acquired scene, and a very similar size on the
acquired images, as seen in the left perspective view of the virtual projection room. However, as
shown in the top and lateral orthogonal views, the blue sphere is perceived close to the spectator,
and the red one far away. Because of the relative size of objects, the spectator perceives the blue
sphere as normal size, whereas the red sphere is perceived as “huge”.

is still a very active research topic. In general, methods compute the cost of a pixel
to have a given disparity, and find the disparity map minimizing the global cost of
the image. Examples are, semi global block matching (Hirschmüller, 2008) or Sinha
et al. (2014).

Sparse feature correspondences can be obtained with well established standard
techniques (Baker and Matthews, 2004; Lowe, 2004). Those techniques do not
provide features in large textureless images regions and may contain false matches,
known as outliers. To counter those drawbacks, Lang et al. (2010) propose to exploit
downsampled dense correspondence information using optical flow (Werlberger
et al., 2009), and to automatically filter the outliers with SCRAMSAC (Sattler
et al., 2009), an improvement of the well known RANSAC method (Fischler and
Bolles, 1981).

Disparity Mapping Functions The goal of a disparity mapping function �(d)
is to reduce the distortions in the 3D transformation between the acquired scene
and the perceived scene (Sec. 3.2). By a clever modification of the disparity of the
projected stereoscopic pair, the depth distortions can be reduced. The simplest
form of disparity mapping function is a linear mapping, like for example the one
proposed by Kim et al. (2008). A linear mapping of the disparity corresponds to a
view interpolation between the two original views. The disparity mapping function
can also be non linear, either defined as a single function (Devernay and Duchêne,
2010) or as a combination of disparity mapping operators (Lang et al., 2010). In
Sec. 3.4.2 we mathematically study their impact in the perceived depth. In Fig. 3.16
we illustrate the shape of a non-linear disparity mapping function.

Rendering Once the disparity is modified, the novel view synthesis problem
basically reduces to a view interpolation problem. In the literature of novel view
synthesis to adapt stereoscopic content to the viewing conditions, we can distinguish
two di↵erent types of methods. A first group of methods use dense disparity maps
warps to render the target views, and a second group of methods use content aware
warps. We briefly discuss their advantages and drawbacks.
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Fig. 3.16: An example of a disparity mapping function �(d) from Lang et al. (2010). In the first
part of the function, a linear mapping preserves the depth. After a certain depth, the function is
almost flat, compressing a large depth range into a smaller range of depth values. Scene elements
that were far away are pulled forward in depth.

Dense geometry warps Methods using a dense geometry belong to the family
of depth image-based rendering (DIBR) methods. A detailed scheme of how DIBR
methods work can be found in Zinger et al. (2010). The basic idea is to generate
a virtual viewpoint using texture and depth information of the original images.
Artifacts are usually removed by post-processing the projected images. These
images are then blended together and the remaining disocclusions are filled in by
inpainting techniques (Oh et al., 2009; Jantet et al., 2011).

The main drawback of DIBR methods, is that any error in the disparity
estimation will generate artifacts in the final generated views. These can appear
only on one view and disrupt the 2D image quality, or appear in both views, thus
creating 3D artifacts, i.e. floating bits in 3D creating a very unnatural perception.
To improve the quality of the rendered image there exist several leads. For
example, Devernay et al. (2011) propose an artifact detection and removal process
whereas Smolic et al. (2008) propose to detect unreliable image regions along depth
discontinuities and to use a specific processing to avoid the artifacts.

Content Aware Warps Content aware warps methods treat the novel view
synthesis problem as a mesh deformation problem. This problem has been
extensively studied in the field of media retargeting, where one wants to adapt the
images or videos for displays of di↵erent sizes and aspect ratios (Wang et al., 2008;
Shamir and Sorkine, 2009; Guo et al., 2009). The basic idea is to consider the image
as a regular grid, and compute the grid transformation preserving some constraints.
In Fig. 3.17 a) we illustrate the results of the grid deformation proposed by Lang
et al. (2010). To compute the warp they propose to use stereoscopic constraints,
temporal constraints as well as saliency constraints. Stereoscopic constraints ensure
that the disparity of the resulting image matches the expected mapped disparity.
Temporal constraints ensure the warp to evolve smoothly over time. Saliency
constraints ensure that the warp preserves as much as possible the shape of detected
salient regions (Guo et al., 2008). Less salient regions are allowed to be more
distorted. Additionally, Yan et al. (2013) propose to add new constraints to preserve
lines and planes, as they are likely to seem unnatural when distorted by the warp
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(see Fig. 3.17 b) and c) ). As we saw in Sec. 2.1.1, the perspective depth cue is
mainly guided by straight lines. Moreover, they allow the user to manually add
constraints on any region of the scene as some important objects of the scene may
be undetected by the saliency estimation. Similar approaches (Chang et al., 2011;
Lin et al., 2011) also use content aware warps and allow the user to manually add
constraints. Masia et al. (2013) also propose a similar method to adapt the content
to glasses-free automultiscopic screens.

The major advantage of these methods is that they do not create empty
disocclusion areas. Every pixel of the target image has a correspondence in the
input image, and thus the inpainting hole filling step is avoided. Although some
methods (Chang et al., 2011; Lin et al., 2011) claim that the use of sparse features
is an advantage with respect to dense disparity maps, the computational cost of
GPU stereo methods (Kowalczuk et al., 2013) is nowadays small.

Content aware warps methods have two main limitations. The first is that only
moderate modifications of the initial disparity are allowed, i.e. ⇥2,⇥3 disparity
expansion. Otherwise, important stretch artifacts are visible in the final images.
The second drawback is that it is unclear how to blend multiple images generated
with these techniques. While the blending stage is explicit in DIBR methods, it has
never been addressed in the content aware warps literature.

3.4.1 Modifying the Perceived Depth

Let us now study how a disparity mapping function a↵ects the perceived depth from
stereopsis. We note the disparity mapping function �(d) : R ! R, transforming
a disparity d into a mapped disparity d0 = �(d). �(d) is generally assumed to
be increasing monotonic, to avoid mapping farther objects of the scene in front of
nearer objects of the scene. As we saw in Sec. 3.1.6, the disparity may be in pixel
units or without units, as a fraction of the image size. The function �(d) must be,
of course, in the proper units. In our work we consider d to be a proportion of the
image width, and thus without units.

The mapping function �(d) modifies the perceived depth (Eq. 3.33), the ocular
divergence limits (Eq. 3.51), the roundness (Eq. 3.62) and the relative perceived
size of objects (Eq. 3.71). In the next section we adapt the previous equations by

a) b) c)

Fig. 3.17: a) Figure reproduced from Lang et al. (2010). Stereo correspondences, disparity
histogram and close-ups of the warped stereo pair. b) Figure reproduced from Yan et al. (2013).
With Lang et al. (2010) method straight lines are no longer straight. c) Yan et al. (2013) method
preserves straight lines.
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taking into account �(d). With these equations, we can derive constraints on �(d).

3.4.1.1 Mapped Perceived Depth from Stereopsis

Let us recall Eq. 3.31 relating the depth z of a scene object to the captured disparity
by the filming system with parameters b,H, and W :

d =
b

W

(z �H)

z
. (3.74)

This disparity value is now mapped with �(d) into a new disparity d0. Using
Eq. 3.32, which establishes the perceived depth from stereopsis from a disparity, we
obtain the mapped perceived depth from stereopsis

z0 =
H 0

1� W 0
b0 �

⇣
b
W

(z�H)

z

⌘ . (3.75)

3.4.1.2 Mapped Perceived Position

Given a 3D point in the world x = (x, y, z) and a filming configuration (b,W,H)
we project it using P̃ f (Eq. 3.38) and obtain u = (u, v, 1, d) (Eq. 3.39) that we
reproduce:

u =

2

66664

x
z
H
W

y
z
H
W

1
b
W

(z�H)

z

3

77775
. (3.76)

The disparity component of this vector is now mapped with �(d) and we obtain

u0 =

2

666664
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. (3.77)

With P̃
�1

c (Eq. 3.41) we obtain the mapped perceived 3D point from stereopsis.
In homogeneous coordinates it is

x̃0 =

2

66664

x
z
HW 0

WH0

y
z
HW 0

WH0

1
b0��(d)W 0

b0H0

3

77775
. (3.78)
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The components of the mapped perceived 3D point x0 as a function of (b,W,H),
(b0,W 0, H 0), �(d) and the 3D scene point x = (x, y, z) are

x0 =
x b0HW 0

z W
⇣
b0 �W 0�

⇣
b
W

(z�H)

z

⌘⌘ , (3.79)

y0 =
y b0HW 0

z W
⇣
b0 �W 0�

⇣
b
W

(z�H)

z

⌘⌘ , (3.80)

and

z0 =
b0H 0

⇣
b0 �W 0�

⇣
b
W

(z�H)

z

⌘⌘ . (3.81)

3.4.1.3 Mapped Ocular Divergence Limits

In order to avoid ocular divergence, the denominator in Eq. 3.81 should not be
negative:

�(
b

W

(z �H)

z
)  b0

W 0 . (3.82)

This condition establishes a maximum value for the mapping function �(d).
Ocular divergence should be avoided for all elements of the scene. As we assumed
�(d) to be monotonic, then

�(d)  b0

W 0 8d 2 R. (3.83)

3.4.1.4 Mapped Roundness Factor

To compute the mapped roundness factor we first compute the partial derivatives
@x0

@x and @z0

@z . The first one is

@x0

@x
=

b0HW 0

z W (b0 �W 0�(d(z)))
. (3.84)

And the second one is
@z0

@z
=

b0H 0W 0�0(d(z))@d(z)@z

(b0 �W 0�(d(z)))2
, (3.85)

where
@d(z)

@z
=

b

W

H

z2
. (3.86)

The obtained equation for the mapped roundness factor is

⇢(z) =
bH 0

z

�0(d(z))

(b0 �W 0�(d(z)))
. (3.87)
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Di↵erentiable Mapping function Let us note that for the mapped roundness
factor to be properly defined, we need to impose the di↵erentiable constraint to the
disparity mapping function �(d). Otherwise, the mapped roundness could not be
computed at disparity values where �0(d) is not defined. For example, Pitié et al.
(2012) propose to use disparity mapping functions defined with linear segments. At
the junctions points of the linear segments, �0(d) is not defined. Of course this can
easily be solved creating a smooth transition between both segments. In our work
we assume �(d) to be di↵erentiable.

3.4.1.5 Mapped Perceived Size

We are now interested in the operator Ep(z) of Eq. 3.68 predicting the puppet-
theater e↵ect. We want to see how a disparity mapping function a↵ects its value.

Ep(H, z) =
@x0

@x (H)
@x0
@x (z)

(3.88)

With Eq. 3.84 we obtain

Ep(z) =
z

H

(b0 �W 0�(d(z)))

(b0 �W 0�(d(H)))
. (3.89)

3.4.2 Disparity Mapping Functions

Global Linear Mapping The simplest form of disparity mapping function is
a linear mapping �(d) = Ad + B with A,B 2 R, usually written in terms of the
maximal and minimal disparity values (d

min

, d
max

), and the maximal and minimal
mapped disparity values (d0

min

, d0
max

):
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(3.90)

By adapting the interval width of the disparity, the depth range can be scaled and
o↵set to match a target disparity interval. This disparity mapping allows typically
to avoid ocular divergence (Eq. 3.83) or to avoid the vergence-accomodation conflict
(see Sec. 2.2.1), by choosing

d0
max

=
b0

W 0

✓
1� H 0

z
max

(H 0)

◆
,

d0
min

=
b0

W 0

✓
1� H 0

z
min

(H 0)

◆
,

(3.91)

where z
max

(H 0) and z
min

(H 0) are given by the empirical results obtained by Shibata
et al. (2011), Banks et al. (2013) and presented in Fig. 2.5.

The image generated with a linear mapping of the disparity corresponds to a new
view obtained with baseline modification, i.e. the baseline b is scaled with the scalar
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A, and the principal point of the camera is shifted with B.

While a global linear mapping allows to constrain the domain of the mapped
disparity d0, the mapped roundness might be strongly distorted. Let us write
Eq. 3.87 substituting @�

l

@d (d(z)) = A:

⇢(z) =
bH 0

z

A

(b0 �W 0�l(d(z)))
. (3.92)

The mapped roundness is scaled accordingly with the factor A.

Global non-linear Mapping Lang et al. (2010) propose to use generic nonlinear
disparity mapping functions to achieve disparity compression, e.g.

�log(d) = log(1 + sd) with s 2 R. (3.93)

Devernay and Duchêne (2010) propose a global non-linear disparity mapping
function specialized in the adaptation of content from one viewing geometry into
another. If the acquisition parameters (b,H,W ) are known, the disparity mapping
function

�(d) =
db0H

bH 0 + d(HW 0 �H 0W )
(3.94)

creates a linear perceived depth transformation with constant roundness factor 1.
This can be seen by plugging Eq. 3.94 into Eq. 3.75. We obtain

z0 =
W 0

W
(z �H) +H 0. (3.95)

This disparity mapping function corresponds to a viewpoint modification. The
transformed images have the same geometry as if they were shot with the
Homothetic Setup (Sec. 3.2.1.2). However, to generate the new views from only
two original images is not straightforward. In the first place, one would need to
adapt the on-screen size of the scene objects, as a viewpoint modification changes
the perspective. Another important problem is that in the viewpoint modification
process, large parts of the scene that should be visible may not even be acquired
in the original images. Thus large areas of the new views should be inpainted.
Devernay and Duchêne (2010) propose an hybrid disparity mapping solution to
minimize the inpainted regions.

Locally Adaptive Nonlinear Disparity Mapping As depth in a stereoscopic
movie is a narrative tool, it seems appropriate to give the user the control of the
depth mapping function. Lang et al. (2010) propose to define the disparity mapping
function �a(d) as a composition of basic operators �i, each defined in a di↵erent
disparity range ⌦i:

�a(d) =

8
><

>:

�
1

(d) if d 2 ⌦
1

. . . . . .

�n(d) if d 2 ⌦n

. (3.96)
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Each of these disparity mapping functions can be, either automatically computed
by an algorithm, or manually edited by the user. The Parallax Grading Tool 1 is
a user interaction technique proposed by Pitié et al. (2012) allowing the artist
to fine tune the final depth of a stereoscopic shot. Chang et al. (2011) provide
another interactive editing system allowing depth manipulations of the stereoscopic
content, e.g. selecting an area and editing its 3D position and scaling factor. All
those systems work with locally adaptive nonlinear mapping functions.

3.5 Filming with Long Focal Lengths: Ocular Diver-

gence vs. Roundness

The maximal baseline to avoid ocular divergence is given by Eq. 3.51:

b
div

= b0
W

W 0 . (3.97)

The baseline giving a roundness factor equal to 1 at the depth of the screen z = H
is given by Eq. 3.62

b
round

= b0
H

H 0 . (3.98)

We note f = H
W the normalized acquisition focal length, and f 0 = H0

W 0 the
normalized projection focal length. The ratio between both baselines b

div

and b
round

is then equal to the ratio of the normalized focal lengths:

b
div

b
round

=
f 0

f
. (3.99)

As we saw in Sec. 3.2.7, it is reasonable to assume that the normalized projection
focal length lies in the interval [1.4, 2.5], 1.4 being the empirical value estimated
by Banks et al. (2013), and 2.5 being the recommendation in Spottiswoode et al.
(1952). However, long focal lengths, widely used in live sports broadcast, or nature
documentaries, can easily reach normalized focal values around 10, like for example,
the “Angenieux Optimo 28-340 cinema lens” (Angenieux, 2015). Acquiring a
stereoscopic pair of images with a 340mm focal length does either create ocular
divergence, or produce a cardboard e↵ect (Sec. 3.2.4.1). Note that this phenomenon
is independent of the projection geometry, as the preferred viewing distance depends
on the width of the screen. Most stereographers follow the acquisition rules defined
by Chen (2012), stating that it is preferable to create a cardboard e↵ect, leading to
a poor stereoscopic experience, rather than ocular divergence, which creates visual
fatigue.

The incompatibility of the divergence baseline and the roundness baseline
strongly limits the use of long focal length in today’s stereoscopic filming (Mendiburu,
2009).

1parallax is also used in the cinematographic industry as another term for disparity.



50 Chapter 3. Stereoscopic Filming: a Geometric Study

3.5.1 Limitations of the State of the Art

As we saw in Sec. 3.4, the literature has addressed the problem to adapt a
stereoscopic image to the viewing conditions. To solve the incompatibility between
the divergence baseline and the roundness baseline, one could define a disparity
mapping function and use those methods.

Using the non-divergent baseline We could acquire the images with the
baseline b

div

from Eq. 3.97 and then use disparity mapping to increase the roundness
factor in the desired areas. Unfortunately, in order to add roundness, the disparity
map needs to be very accurate to discriminate the local geometry. As the acquiring
baseline is small, the obtained precision of the stereo methods is not accurate
enough. This can be seen by writing the derivative of the disparity d in Eq. 3.31
with respect to the depth z i.e. how does a change in z a↵ect the disparity:

@d

@z
(z) =

b

W

H

z2
. (3.100)

If we use the acquisition baseline b
div

from Eq. 3.97 and evaluate the derivative at
the depth of the screen z = H, we obtain

@d

@z
(H) =

b0

WW 0
1

f
. (3.101)

The higher the value of the normalized focal f , the smaller the disparity variation
is.

Let us note that Pitié et al. (2012) or Didyk et al. (2010) are capable to add
roundness to the shots, because they work with very accurate, computer generated
disparity maps. If they are available, any disparity mapping method could be used.

In the lack of an accurate disparity map, a possible solution would be to use a
2D to 3D conversion technique, like for example the one proposed by Ward et al.
(2010). The user can select an object and use a depth template, a predefined 3D
shape (a sphere, a face, a car), as depth map for the selected object.

Using the roundness baseline Another option would be to acquire the scene
with the baseline b

round

from Eq. 3.98. In this case the problem would be to avoid the
divergence created by the farthest elements of the scene. To preserve the acquired
roundness, the disparity mapping function would be the identity around the depth
of the screen. To avoid ocular divergence, disparities in the background would be
compressed, e.g with a nonlinear disparity operator (Lang et al., 2010). In this case
the problem is the visibility. The disparity of an object of the scene at depth z can
be written by combining Eq. 3.31 and Eq. 3.98:

d =
b0

W

H

H 0
(z �H)

z
. (3.102)
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This disparity value might be very high under certain circumstances. Let us
illustrate with a numerical example. If the acquisition parameters are b

round

, H =
20m and W = 2m, and the target projection configuration is a home cinema:
b0 = 65mm, H = 3m and W = 2m, then the acquisition baseline is b

round

⇡ 48cm,
and the resulting disparity d ⇡ 0.25, i.e. a 25% of the image size. These high
disparity values introduce two important disocclusion areas. The first is near the
image borders and the second around depth discontinuities between foreground and
background objects. As we illustrate in Fig. 3.18, elements near the right border
of the left image are not visible in the right image, whereas elements near the left
border of the right image are not visible in the left image. Moreover, background
areas near the foreground subject are only visible in one image. The computation
of a disparity map from these images can only recover a few disparity values.

3.5.2 Why Do Artists Use Long Focal Lengths?

At this point we have seen that it is not straightforward to generate stereoscopic
images with long focal lengths. The natural question for the artists arises: why do
artists use long focal lengths? In 2D cinema or television, long focal lengths are
used in two cases. The first is when it is impossible to place the camera at the
desired position. The second is to create aesthetic perspective deformations of the
acquired scene.

The desired camera position is impossible to reach The impossibility to
place a camera at the desired position might be physical, or social. For example,
when acquiring a live show, the director would like to film the solo of the guitarist
of the band with a close shot. However, it might be not acceptable to have cameras
on the scene, specially between the performers and the audience. Another example
arises when filming a polar bear in the north pole. Although the director would
like to have a nice shot of the bear hunting a prey, it would not be safe for the crew
(and the equipment) to stand close to the hungry wild beast. In these cases, long
focal length allow to create shots, as if we were close to the acquired scene, while
standing physically far away.

The first motivation of the director to use long focal length is to get close to the
scene.

Perspective deformations In the cinematography it is well known that di↵erent
focal lengths distort the perspective, and directors take advantage of these
distortions to convey emotions. In Fig. 3.19 we show examples of image distortions
when shooting with di↵erent focal length. Villains are usually shot with long
focal lengths as they appear to be flatter, whereas heroes are shot with a medium
focal length to appear rounder. One of the most famous use of the perspective
deformation in 2D is the vertigo e↵ect, Hitchcock Zoom or dolly zoom, created by
Alfred Hitchcock in 1958 in his feature film Vertigo. He compensated the backwards
movement of the camera by zooming in the image, to keep constant the size of a
target object. Objects in front and behind the target object are strongly distorted



52 Chapter 3. Stereoscopic Filming: a Geometric Study

a) b)

Fig. 3.18: Scene “The Jumper” acquired using two cameras a) and b). The baseline is chosen to
create a roundness factor of 1 on the subject (Eq. 3.98). Note how a wide part of the background of
image a) is not present in image b), either because it is out of frame, either because it is occluded
by the jumper. Inversely, a wide part of the background of image b) is not present in image a). The
computation of a disparity map between images a) and b) can only recover few of the background
depths.

while the target object appears to be static. The resulting sequence perfectly
conveys the terror of heights felt by the hero. As claimed by 3D professionals
(Mendiburu, 2009, 2011), stereoscopy is a narrative tool. Directors should be
given the opportunity to play with the perspective distortions at will to create
new narratives yet to be invented.

The second motivation of the director to use long focal length is to add perspective
deformations of the scene.

3.5.3 Proposed Solutions

In this manuscript we propose two di↵erent solutions to create stereoscopic shots
with long focal lengths, each one following the intentions of the director.

If the director wants to create a shot to get closer to the scene, we propose to
generate new views with a viewpoint modification (see Sec. 5.1). We propose to
acquire the scene with di↵erent cameras with di↵erent focal lengths and combine
them into the desired images. These methods are known as novel view synthesis or
free viewpoint rendering and we address them in Chapter 4.

If the director wants to create a shot to add perspective deformations to the
scene, we propose to acquire the scene with di↵erent cameras, each acquiring the
scene with a di↵erent baseline, and then combine the images into the final shot
(see Sec. 5.2). This idea is not new and is known with the term multi-rig (or
multi-rigging) (Mendiburu, 2009; Devernay and Beardsley, 2010; Dsouza, 2012).
The space is divided into n depth regions: [0, z

1

), . . . , (zn�1

,1]. For each region, a
baseline bi is chosen in order to obtain a di↵erent perceived depth function z0(z, bi)
(Eq. 3.33). Depending on the depth z of the scene element, the corresponding
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Fig. 3.19: Figure reproduced from Banks et al. (2014). Depth compression and expansion with
di↵erent focal lengths. A) Left panel: wide-angle e↵ect (short focal length). Picture taken with a
16mm lens (all focal lengths are reported as 35mm equivalent). The goat looks stretched in depth.
Right panel: telephoto e↵ect (long focal length). Picture taken with a 486mm focal length. The
distance between the pitcher’s mound and home plate on an o�cial Major League Baseball field is
18.4 meters. This distance appears compressed. B) Photographs of the same person were taken
with focal lengths from left to right of 16, 22, 45, and 216mm. Lens distortion was removed in
Adobe PhotoShop, so the pictures are nearly correct perspective projections. Camera distance was
proportional to focal length, so the subject’s interocular distance in the picture was constant. The
subject’s face appears rounder with a short focal length and flatter with a long focal length.

function is used. The final perceived depth function is then

z0(z) =

8
><

>:

z0(z, b
1

) if 0 < z  z
1

. . . . . .

z0(z, bn) if zn�1

< z  1
. (3.103)

For example, one could use three cameras as follows. The first two cameras
would be placed with a baseline to avoid ocular divergence (Eq. 3.97). Then the
third camera would be placed with a baseline with respect to the first to create the
desired roundness factor on the subject (Eq. 3.98). In the final shot we would like to
have the non-diverging background from the second camera, and the subject with
the desired roundness from the third camera. We illustrate the 3 camera multi-rig
idea in Fig. 3.20.

Multi-rigging is already used in computer graphics films. Care should be taken
in the depth composition of the di↵erent layers, specially at the depth transitions
zi between the di↵erent shots, as important visible artifacts could appear (Pinskiy
et al., 2013). To avoid these artifacts (Pinskiy et al., 2013) propose to use non-linear
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a) b) c)

Fig. 3.20: Scene “The Jumper” acquired using three cameras a), b) and c). The baseline between
a) and b) avoids ocular divergence (Eq. 3.97). The baseline between a) and c) creates a roundness
factor of 1 on the subject (Eq. 3.98). a) is chosen as the left view of the final stereoscopic pair
of images. The right image should ideally be the combination of the subject acquired in image c)
(desired roundness factor), and the background acquired in image b) (avoiding ocular divergence).

viewing rays to ensure smooth transitions between parts of the scene captured with
di↵erent baselines. If rendering time is not an issue, Kim et al. (2011) propose to
render a dense lightfield of the scene. Artists have then a per pixel control over the
disparity and stereoscopic images can be computed as piece-wise continuous cuts
through the lightfield.

Multi-rigging has also been used in actual live steresocopic 3D films, but requires
careful planning and important human e↵orts, as green screens are used to help
with the depth composition of the di↵erent shots (Dsouza, 2012). Moreover, when
planning a multi-rig shot, an “empty safe area” with no scene objects around the
compositing depths zi is used to avoid the visual artifacts(Pinskiy et al., 2013).

In our work we are interested in how to smoothly combine the di↵erent shots
with di↵erent baselines. The depth composition of multiple baseline shots can
be interpreted as a disparity mapping function composed from basic operators
(see Sec. 3.4.2), with each baseline defining a di↵erent disparity mapping function.
Moreover, the disparity mapping function could be interpreted in terms of depth.
Originally the disparity mapping function was defined in terms of disparity because
the main applications of the original approaches, were post-production (Lang et al.,
2010) and the content adaptation to the viewing conditions (Devernay and Duchêne,
2010). In both cases the initial input is a stereoscopic image with a range of
disparities. However, if we are at the acquisition stage, it is possible not to
consider the initial disparity d, and the mapped disparity d0 = �(d), but the original
geometry z(d), and the mapped geometry z(�(d)). This way we could transform
the disparity mapping problem into a more general image-based rendering problem.
Of course some adaptations will be needed, as in this mapped geometry the optical
rays are not straight anymore. We discuss the proposed solutions in Sec. 5.2.

3.5.4 Research Questions

Although the resulting images from both approaches will be di↵erent, both cases
share a common problem: how to blend multiple images. The combination of
multiple views has been extensively studied in the domain of image-based rendering.
In the next chapter we analyze the state of the art and contribute to this domain.



4
Bayesian Modeling of Image-Based

Rendering

In the previous chapter we saw that to generate stereoscopic images with a long
focal length we need to render novel views of a scene from a given set of input
images. In computer graphics this domain is known as Image-Based Rendering
(IBR).

In the first section of this chapter we motivate our work and review the state of the
art of IBR methods. We also briefly review the state of the art of 3D reconstruction
methods, as IBR methods often rely on a geometric knowledge of the scene. We
highlight the existing ideas which we build on and describe the current limitations.

In the second section of this chapter we propose a new IBR approach, based on the
Bayesian formalism. We detail our approach and conduct experiments to illustrate
its benefits and limitations. We also point directions of future improvement.

In the third part of the chapter we establish the formal link between the heuristics
widely used in the IBR literature and our model. We conclude the chapter with a
summary of the contributions.

4.1 Motivation

In our work, we address the problem of novel view synthesis in the domain of Image-
Based Rendering (Shum et al., 2007), where the aim is to synthesize views from
di↵erent viewpoints using a set of input views in arbitrary configuration. Most of the
methods from the state of the art use heuristics to define energies or target functions
to minimize, achieving excellent results. A major breakthrough in IBR was the
inspiring work of Buehler et al. (2001). They define the seven “desirable properties”
which any IBR algorithm should have: use of geometric proxies, unstructured input,
epipole consistency, minimal angular deviation, continuity, resolution sensitivity,
equivalent ray consistency, and real-time. As we will see, those directives still prevail
throughout the current state of the art.
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Recently, the use of the Bayesian formalism has been introduced in IBR
techniques, with the work proposed by Wanner and Goldluecke (2012). They
provide the first Bayesian framework for novel view synthesis, describing the image
formation process with a physics-based generative model and deriving its Maximum
a Posteriori (MAP) estimate. Moreover, their variational method does not only
address the problem of novel view synthesis. It directly addresses the synthesis
of new super-resolved images, and provides a solid framework for other related
problems, namely image denoising, image labeling and image deblurring.

Interestingly, although Buehler et al. (2001) and Wanner and Goldluecke (2012)
have addressed the same problem, their theoretical results do not converge into
a unified framework. On the one hand, the guidelines dictated by Buehler et al.
(2001) have proven to be very e↵ective, but lack a formal reasoning supporting
them. Moreover, it is unclear how the balance between some of the desirable
properties should be handled. An illustrative example is the tradeo↵ between
epipole consistency and resolution sensitivity. The former notes that “when a
desired ray passes through the center of projection of a source camera it can be
trivially reconstructed”, while the latter observes that “in reality, image pixels
are not really measures of a single ray, but instead an integral over a set of rays
subtending a small solid angle. This angular extent should ideally be accounted
for by the rendering algorithm.” The epipole consistency is enforced with an
angular deviation term, while the resolution sensitivity is driven by the Jacobian
of the planar homography relating the views. Both heuristics seem reasonable, but
which one should dominate? The choice of the weights between the properties is
user-tuned, and in their experiments, parameters have to be adjusted di↵erently
depending on the scene.

On the other hand, the existing Bayesian model Wanner and Goldluecke (2012)
is able to explain some of the heuristics, but still violates others which seem evident
and have proven to work e↵ectively. For example, we do find an analytic deduction
of the influence of the foreshortening e↵ects due to the scene geometry in the
energy. The findings confirm the heuristic proposed by Buehler et al. (2001):
it is driven by the Jacobian of the transformation relating the views. However,
when carefully analyzing the final equations in Wanner and Goldluecke (2012), an
important desirable property proposed in Buehler et al. (2001) is still missing: the
minimal angular deviation of the viewing rays is not enforced and even violated in
some cases.

In Fig. 4.1, we illustrate this limitation. In the left part of the figure, we want to
render image D with C

1

and C
2

. Because of the foreshortening e↵ects, camera C
2

is
favored over camera C

1

. However, the angular distance of the viewing rays between
D and C

1

is much smaller than D and C
2

. This is still made more evident in the
extreme case where the observed geometry, the camera sensors, and the camera
translations are all parallel, as we illustrate in Fig. 4.1b. In this configuration,
the contribution of each view is equal, independently of their relative position.
However, Buehler et al. (2001) desires that the nearest views to the target view,
should contribute more than farther views, due to the angular deviation between
them.
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Fig. 4.1: View D is generated from cameras C
i

using Wanner and Goldluecke (2012). a) camera
C

2

will be favored over camera C
1

because of the foreshortening e↵ect. However, the angular
distance of the viewing rays between D and C

1

is much smaller than D and C
2

. b) configuration
with a flat scene. All cameras will have the same contribution, despite the di↵erent viewing angles.

Our work is motivated by the di↵erences between state of the art generative
models and the energies proposed by generally accepted heuristics. Our goal is
to retain the advantage of the intrinsically parameter-free energies arising from
the Bayesian formalism, while pushing the image formation model boundaries
of Wanner and Goldluecke (2012) and provide a new model which is capable to
explain most of the currently accepted intuitions of the state of the art in IBR.

The key point of our method is to systematically consider the error induced by the
uncertainty in the geometric proxy. The use of the geometric uncertainty has been
inspired by the first desirable property: the use of a geometric proxy. According to
Buehler et al. (2001), an ideal IBR method should be capable to take advantage if
geometric information is available and improve the results if the provided geometry
is more accurate. For example, in recent years we have seen the arrival of relatively
a↵ordable depth sensors, e.g. structured light cameras or time of flight sensors.
If those devices provided a better geometry, IBR methods should be capable to
integrate their information and improve the rendering results. However, in some
specific applications, the computation (or acquisition) of the geometry may not be
accurate. To our understanding, the ideal IBR method should also be capable to
adapt if only a poor geometric proxy is available. The pursue of this plasticity has
led us to consider the geometric uncertainty of the given geometric proxy as an
input of our method.
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4.2 Related Work

4.2.1 Image-Based Rendering

In 1995, McMillan and Bishop (1995) proposed to consider the di↵erent existing
image-based rendering techniques as a common problem: the plenoptic sampling.
They claimed that movie-maps (Lippman, 1980), image-morphing (Beier and Neely,
1992), view interpolation (Chen and Williams, 1993) and the method proposed
by Laveau and Faugeras (1994), could be seen as the attempt to reconstruct the
plenoptic function (Adelson and Bergen, 1991) from a sample set of that function.
Although IBR methods globally address the same problem, the final purpose of
each method, together with the nature of the considered input, still segments most
of the existing approaches into image morphing or image view interpolation and
free-viewpoint rendering. The taxonomy proposed by Shum et al. (2007) shows
that most IBR methods rely on an estimation of the geometry, often referred to as
“geometric proxy”. They propose to classify the methods in an “IBR Continuum”
depending on how much geometry they use. In Fig. 4.2 we show the “IBR
Continuum”, which is well suited to illustrate the variety of IBR methods. On one
end of this continuum we have methods which do not use any geometry but rely on
a large collection of input images, like light field rendering (Levoy and Hanrahan,
1996), its unstructured version (Davis et al., 2012), and concentric mosaics (Shum
and He, 1999). On the opposite end, we have rendering techniques relying on
explicit geometry, using accurate geometric models but few images, such as layered
depth images (Shade et al., 1998; Chang et al., 1999) and view-dependent texture
mapping (Debevec et al., 1998). In between, we find methods using an implicit
representation of the geometry, such as view interpolation techniques (Chen and
Williams, 1993; Vedula et al., 2005) relying generally on optical flow or disparity
maps, transfer methods (Laveau and Faugeras, 1994) establishing correspondences
along the viewing rays using epipolar geometry, and the Lumigraph (Gortler et al.,
1996), which uses an approximate explicit geometry and a relatively dense set of
images.

Naturally, novel view synthesis is prone to produce visual artifacts in regions
with a poor (implicit or explicit) reconstruction. Even if the performance achieved

Fig. 4.2: The IBR Continuum proposed by Shum et al. (2007). Methods which do not use any
geometry at all (Levoy and Hanrahan, 1996) are on the left end, whereas methods relying on a very
precise geometric proxy (Debevec et al., 1998) are shown on the right.
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by state of the art 3D reconstruction methods in estimating geometric proxies is
phenomenal, considering them as perfect seems too strong of an assumption: even
the best ones have an uncertainty in their final estimates. There are several ways
to address the problem, which mainly depend on the target application.

4.2.1.1 Image Morphing Transitions

Image interpolation or image morphing techniques aim at creating compelling
transitions between pairs of images. They often rely on an implicit geometric
proxy, i.e. optical flow (Chen and Williams, 1993; Wolberg, 1998), although
recent evolutions propose extensions of the optical flow (Mahajan et al., 2009) or
perceptually based image warps (Stich et al., 2011), both obtaining very impressive
results.

In Photo Tourism (Snavely et al., 2006), an interactive tool allowing to browse
a large photo collection, non photo realistic view transitions are computed using
planes as the geometric proxy. The main di�culty addressed by this work is the
di↵erence in appearance between the images, as they may be taken with di↵erent
cameras and at very di↵erent times. With the proposed technique, parallax artifacts
arise when the user moves between views. In their followup work (Snavely et al.,
2008), the artifacts are reduced by aligning the transition planes with detected
features. Taneja et al. (2011) propose transitions between cameras recording a
dynamic scene. In their work they use billboards as a geometric proxy for the
subject of interest, and only use one input view in the rendering. With a clever
scheme, they choose when to switch the view to minimize visual artifacts in the
transition.

4.2.1.2 View Interpolation

View interpolation aims at generating a new intermediate view between two existing
views. Usually these methods use a pair of rectified image and disparity maps as
input. We reviewed these methods in Sec. 3.4 and do not discuss them further.

4.2.1.3 Depth Uncertainty Awareness

The idea to use the depth uncertainty in the rendering process is not new. Ng
et al. (2002) propose a “range-space” approach to compute the possible depths of a
pixel and extract the estimated depth uncertainty. The final blend is computed by
taking into account the minimal angular deviation and the depth uncertainty. With
respect to them we seek the inclusion of the resolution sensitivity in the blending
factors, as well as a formal deduction of the blending weights equations. Hofsetz
et al. (2004) extend the “range-space” search and propose to extract the depth
uncertainty in the form of an ellipsoid. Each ellipsoid is assigned with the color
of the input image and the final image is computed by accumulating the projected
ellipsoids. They use the blending weights proposed by Buehler et al. (2001).
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Smolic et al. (2008) address the problem of novel view interpolation for multi-
scopic 3D displays. Although they do not explicitly compute the depth uncertainty,
they propose to segment unreliable image regions along depth discontinuities.
Unreliable image regions which are prone to introduce visual artifacts are specifically
processed.

With the same goal to reduce the visual artifacts arising from a poor geometric
reconstruction, Fitzgibbon et al. (2005) propose to restrain the space of possible
colors with the help of an implicit geometric proxy. For each pixel of the final
image, they extract a set of possible color candidates. As the obtained color set
includes strong high frequencies between neighboring pixels, they propose to use
an image-based prior to select the final best color. During the extraction of the
set of possible color candidates, the color contributed by each image is considered
independently from the minimal angular deviation and the resolution sensitivity.
Because of the high density of input images, only small artifacts are perceptible in
their results.

Goesele et al. (2010), in Ambient Point Clouds, propose the computation of an
improved geometric reconstruction, allowing to detect image regions with poor, or
incomplete geometry. For those image regions they propose to use a non-photo-
realistic transition based on epipolar constraints.

4.2.1.4 Dense Camera Arrays

Another way to address this problem is to improve the acquisition setting, and use
a relative high density of images, as done by Zitnick et al. (2004) and Lipski et al.
(2010). They achieve a good enough reconstruction, leading to impressive novel
view synthesis. However, their setting is heavily constrained.

Lipski et al. (2014) propose an hybrid approach between image-morphing and
depth-image-based rendering, including a refinement of the explicit geometry and
the implicit correspondence estimation. They considerably improve the blur
artifacts created by small inaccurate registrations of the warped images, but their
method strongly relies on precise image correspondences, which are not available
with wide-baseline configurations.

Although free-viewpoint navigation is possible with those techniques, the novel
view locations are often constrained to positions between the input views and do
not allow to the virtual camera to “get closer” to the scene.

4.2.1.5 Free Viewpoint Rendering

The approaches of Kanade et al. (1997) and Moezzi et al. (1997) are known to
be the earliest 3D video multi camera studios for free-viewpoint rendering. The
main idea is that during rendering, the multiple images can be projected onto a
geometric proxy, in order to generate a realistic view-dependent surface appearance
(Matusik and Pfister, 2004; Carranza et al., 2003; Tanimoto, 2012). The ability to
interactively control the viewpoint during rendering has been termed free-viewpoint
video by the MPEG Ad-Hoc Group on 3D Audio and Video (Smolic and McCutchen,
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2004; Smolic et al., 2005). A free-viewpoint rendering method should be capable
of handling wide-baseline camera configurations and not constraining the position
of the novel rendered views (Zinger et al., 2010), as is usually the case in image
interpolation methods.

Most of the contributions in this domain have targeted the productions of live
events, and in particular sports. Because of the heavy constraints in the live
broadcast settings, most methods address all the di�cult problems of camera
calibration, reconstruction and rendering in an unified framework. For example,
Germann et al. (2012) present a complete solution to the novel view synthesis
problem, performing acquisition, reconstruction and rendering.

An interesting approach related to our purpose is the work from Hilton et al.
(2011), where they propose to render stereoscopic images from a standard camera
configuration used for a 2D broadcast. In a standard 2D broadcast camera setup the
number of cameras can be relatively high (up to 26), thus they propose to combine
them and generate stereoscopic shots. In their work they do not explicitly address
the long focal length shots, and our approach to the stereoscopic zoom (Chapter
5), could be build on such a framework.

Most interestingly, there has been an evolution of the geometric proxys used
in the literature of free-viewpoint rendering in the sports domain: Hayashi and
Saito (2006) propose to use billboards, which result in blurry images, or ghosts,
because of small errors in the image registration. Grau et al. (2007) propose to
use the visual hull from silhouettes, which has the limitation that a small error in
the camera calibration can remove thin structures like arms and legs. Germann
et al. (2010) extend the billboards to articulated billboards, which usually rely
on interactive pose estimation algorithms. According to Guillemaut et al. (2009)
and Hilton et al. (2011), those algorithms ask for too much user interaction to be
practical for long sequences. Therefore Guillemaut et al. (2009) and Guillemaut
and Hilton (2011) propose an approach to jointly optimize scene segmentation
and player reconstruction from silhouettes, taking into account camera calibration
errors. When observing the past evolution of the geometric proxys, and expecting
new evolutions to appear, we believe that an ideal IBR method should be capable
to adapt to and benefit from the improved geometric proxys.

4.2.1.6 Unstructured IBR

In the literature addressing the generic IBR unstructured configurations outside
the sports domain, Hornung and Kobbelt (2009) propose to improve the rendering
quality by computing the warps from the input views onto the target views using a
particles approach. Their improved reconstruction allows them to create new views
from di↵erent view positions and di↵erent focal distances. In the blending stage
they use the weights proposed by Buehler et al. (2001).

Although most methods use either an implicit or an explicit geometric proxy, some
approaches propose an hybrid approach considering both kinds of geometries. For
example, Floating Textures (Eisemann et al., 2008) propose a first match between
textures using an explicit geometry, which is then adjusted using the optical flow
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between the input images. In the proposed framework, any weight can be considered
in the blending stage, as long as they are normalized: the sum of all contributing
camera must be 1.

Chaurasia et al. (2013) deal with inaccurate or missing depth information
proposing local shape-preserving warps based on superpixels. An over-segmentation
of images allows them to create plausible renderings for scene regions with unreliable
geometry. In the blending stage they use the weights from Buehler et al. (2001)
with a supplementary modification: to avoid excessive blending they only blend 2
views. Kopf et al. (2014) propose to create first person hyperlapse videos from a
video sequence. They reconstruct a geometric proxy and compute a new trajectory
for the camera taking into account the guidelines of Buehler et al. (2001). The final
fusion of the images is performed as a labeling problem (Agarwala et al., 2004).
They contribute an improvement on how to enforce the resolution penalty. Instead
of computing the determinant of the Jacobian of the warp, which can be small even
for highly distorted views, they propose to individually use the singular values of
the Jacobian matrix, which better account for the stretch of the image. In their
work they do not account for the minimal angular deviation, as the movement in
their input images is mostly frontal. In a sequence with a lateral movement, a flat
geometry would have the same penalty for all views as we illustrated in Fig. 4.1b.

4.2.1.7 How to Blend Multiple Images?

When Buehler et al. (2001) introduced Unstructured Lumigraph Rendering, they
established the seven “desirable properties” that all IBR methods should fulfill:
use of geometric proxies, unstructured input, epipole consistency, minimal angular
deviation, continuity, resolution sensitivity, equivalent ray consistency, and real-
time. In their work they reviewed the best eight performing methods at the time
(Levoy and Hanrahan, 1996; Gortler et al., 1996; Debevec et al., 1996; Pighin et al.,
1998; Pulli et al., 1997; Debevec et al., 1998; Heigl et al., 1999; Wood et al., 2000)
and observed that none of them fulfilled all the “desirable properties”. For example,
none of them considered the resolution sensitivity property: “In reality, image pixels
are not really measures of a single ray, but instead an integral over a set of rays
subtending a small solid angle. This angular extent should ideally be accounted
for by the rendering algorithm” (Buehler et al., 2001). Only half of the studied
methods take into account the minimal angular deviation: “In general, the choice
of which input images are used to reconstruct a desired ray should be based on a
natural and consistent measure of closeness. In particular, source images rays with
similar angles to the desired ray should be used when possible” (Buehler et al., 2001).
Consequently they proposed a new method with heuristics enforcing the guidelines.
This work has been of major importance in the community. The proposed guidelines
have been adopted by most of the IBR methods and still prevail in recent work
(Hornung and Kobbelt, 2009; Chaurasia et al., 2013; Kopf et al., 2014).

In our work we focus on the desirable properties directing which image should be
preferred over the others, also known as the blending weights. Those properties are
the minimal angular deviation, the resolution sensitivity and the continuity.
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Although Bayesian formalisms are a common way to deal with spatial super-
resolution in the multi-view and light field setting (Bishop and Favaro, 2012;
Goldluecke and Cremers, 2009), they have only recently been introduced to IBR
with the work by Wanner and Goldluecke (2012). While their work provides a
physical explanation for the resolution sensitivity property, the minimal angular
deviation can be violated in their final equations. Most interestingly, Vangorp et al.
(2011) empirically verify which properties in IBR methods are prone to create visual
artifacts, and one of their main results identifies the minimal angular deviation as
a key property to be taken into account to avoid visual artifacts.

Takahashi (2010) studies the theoretical impact of errors in the geometric proxy
when rendering a new view from 2 images. In their results they obtain the minimal
angular deviation as the optimal blend between two images. However, as their
approach is restrained to only 2 views, there is no insight on how the camera
resolution should be taken into account.

Raskar and Low (2002) propose a finer description of the continuity desirable
property, by establishing guidelines to achieve spatial and temporal smoothness:
normalization (sum of weights should equal 1), scene smoothness, intra-image
smoothness, near view fidelity (grouping the epipole consistency and minimal
angular deviation from Buehler et al. (2001)) and localization. In order to achieve
the desired continuity, they propose to consider two di↵erent contributions for
each view: one is view-dependent, and the other is view-independent. The view-
dependent contribution is enforced using a similar penalty as Buehler et al. (2001).
The view-independent contribution is computed in each view by identifying depth
discontinuities in the image using a threshold and computing the distance of the
pixels to the detected depth discontinuity. The view-independent heuristic highly
improves the results near occlusion boundaries. In our work we were inspired by the
view-independent heuristic and aim at avoiding the depth discontinuity threshold,
as well as to provide a formalization on why pixels near a depth discontinuity should
be penalized.

Similarly, Takahashi and Naemura (2012) propose a view-independent weighting
method. They propose to use the confidence on the depth estimates, or as we
call it, the depth uncertainty, in their “Depth-Reliability-Based Regularization”.
Instead of weighting the contributing pixels with di↵erent weights, they act on the
balance between the regularizer and the data term. The reconstruction of a ray
corresponding to an unreliable depth measure is mainly guided by the regularizer
term, whereas the reconstruction of a ray corresponding to a reliable depth measure
is mainly guided by the data term. Artifacts due to unreliable depth measures are
thus avoided. What drives our attention in the proposed work is the use of the
computed depth uncertainty, which is less reliable near depth discontinuities. They
provide a way to eliminate the threshold to compute the distances of pixels to depth
discontinuities used by Raskar and Low (2002). Surprisingly, the weights in their
work neither consider the minimal angular deviation, the resolution sensitivity, nor
the continuity properties.

To summarize, in the literature addressing the problem of how to blend multiple
images, we have Wanner and Goldluecke (2012) who provide formal insights to the
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resolution sensitivity, and Takahashi (2010) who provides formal insights to the
minimal angular deviation. We did not find any formal insights on the continuity
property.

4.2.2 3D Reconstruction Methods

As we have seen in the previous section, IBR techniques are strongly related to the
geometric proxy. Thus we briefly review the 3D reconstruction methods. We focus
on the explicit 3D reconstructions, which are the most generic with respect to the
camera configuration. For a detailed review of the 3D reconstruction methods we
refer the reader to Seitz et al. (2006).

4.2.2.1 Explicit 3D Reconstructions

An explicit geometric proxy may represent the 3D shape of a scene in di↵erent
ways: depth maps, meshes, point clouds, patch clouds, volumetric models and
layered models, each representation having its own advantages and drawbacks. Let
us briefly introduce them. The multiple-baseline stereo problem was addressed
by Okutomi and Kanade (1993). In this configuration all cameras are aligned,
a reference view is chosen and the distances between each camera and the reference
view are called the baselines. One of the advantages is that using multiple images
reduces the ambiguity of matching. The drawback is that computations are done
with respect of the reference view. We only obtain the geometry as seen from
this reference view. Moreover, large baselines have problems in the matching steps
because of occlusions.

The volumetric stereo or voxel coloring approach computes a cost function on a 3D
volume, and then extracts a surface from this volume. The goal is to assign a color
to each of the voxels. Space carving algorithms (Seitz and Dyer, 1999; Kutulakos
and Seitz, 2000; Bonfort and Sturm, 2003; Furukawa and Ponce, 2006) are a popular
approach to this problem. Their main advantage is that their result is a reasonable
initial mesh that can then be iteratively refined. Most of the approaches rely on
a silhouette extraction stage, which makes it di�cult for them to precisely extract
the rims of the scene. Moreover, as an important part of the scene is empty, a lot
of computations are performed on voxels that are not on the scene.

Another way to create a 3D reconstruction is to rely on a set of sparse features
matched in the input images. Those features are merged into tracks corresponding
to 3D points of the scene. For example, Shahrokni et al. (2008) propose to create
a coarse 3D model of the scene by creating solid triangles with the 3D points as
vertices. Similarly, Furukawa and Ponce (2010) propose to first extract features
and get a sparse set of initial matches. Those matches are iteratively expanded to
nearby locations, and false matches are filtered out using visibility constraints. A
great advantage of this method is that it can scale with an increasing number of
images (Furukawa et al., 2010), thus being capable to reconstruct large scenes with
a high number of input cameras. Moreover, the expanded matches can be merged
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into a 3D surface with surface reconstruction techniques, like for example Poisson
reconstruction (Kazhdan et al., 2006).

Another alternative is to create simpler 3D models based on piece-wise planar
proxies, which have been demonstrated in the modeling of interior scenes (Furukawa
et al., 2009) as well as exterior scenes (Sinha et al., 2009).

Depending on the application, ad-hoc acquisition devices can be used, either with
a specific custom device (Kim and Hilton, 2009) or directly with depth scanners,
e.g. structured light sensors or time of flight cameras.

4.2.2.2 Depth Uncertainty

In our work, in addition to the 3D reconstruction, we would like to have access to
the geometric uncertainty of the 3D reconstruction. By geometric uncertainty, we
mean a geometric measure in world units describing the possible deviation in the
measured position of the 3D point.

The uncertainty associated with depth measures has been studied in the field of
robotics, e.g. to address the problem of depth fusion of new measurements with
old ones (Matthies et al., 1989), as well as in the literature of stereo disparity
computation (Kanade and Okutomi, 1994; Fusiello et al., 1997). In general,
reconstruction methods provide a confidence measure in the form of a score, often
associated to the photo-consistency of the 3D point when projected into the images.
This score should be used with caution, because the confidence measure from a
depth estimator is usually unit-less, whereas the geo-uncertainty is in world units.
Although tempting, one should avoid to take the score measures as the geometric
uncertainty, as stated by the study performed by Hu and Mordohai (2012).

However, some algorithms already provide the uncertainty information of the
geometric reconstruction. For example, reconstruction methods using probabilistic
inference (Gargallo et al., 2007; Liu and Cooper, 2014), compute the entire
probability distribution of the 3D reconstruction. By analyzing the probability
distribution one can deduce the geometric uncertainty of the estimated depth, which
is usually the 3D reconstruction corresponding to the MAP configuration. As we
saw earlier, Ng et al. (2002) and Hofsetz et al. (2004) propose a “range-space”
method to compute the uncertainty associated to the computed depth of a pixel.
The computed volumetric depth uncertainty could be integrated as the input of our
method.

Unfortunately, most 3D reconstruction methods do not provide an estimate of the
uncertainty of the geometric proxy. In Sec. 4.5.1.3 we propose simple approaches
to estimate it.

A comment on the learning approach to estimate the geometric uncer-
tainty. Before we detail our generative model, we would like to point a learning
approach proposed by Mac Aodha et al. (2010) and Reynolds et al. (2011) to
estimate the accuracy of any image processing algorithm. Their work hypothesis
is that the accuracy of the algorithm depends on the input data. They treat the
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algorithm as a black box, feeding it with controlled data and analyzing the output
result. Then, comparing the results with the groundtruth, they obtain an error
map. Then they train classifiers in order to find patterns between the input data
and the error map. Once the classifiers are trained, they can first analyze the input
data, and predict the accuracy of the method. Furthermore, Mac Aodha et al.
(2010) propose to use multiple algorithms on the same input image. They first
segment the input image, by assigning the best predicted algorithm to each part
of the image. Then they only apply the corresponding algorithm to the segmented
area. While e↵ective, the main limitation of these methods is the amount of initial
data to train the classifiers. However with the impressive growth of the available
data, it is indeed a promising lead in the estimation of the accuracy of any image
processing algorithm.
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4.3 Formalizing Unstructured Lumigraph

In this section we briefly introduce the Bayesian formalism for the IBR problem.
Then we describe the proposed novel view synthesis generative model.

4.3.1 The Bayesian Formalism

Probability theory provides an ideal framework to formalize inverse problems. The
idea is to jointly model the observed data and the unknown variables in a single
probability space. Having such a space one can simply ask the question: what is
the probability of a solution given the observed data? Formalizing real problems in
this way is often called the Bayesian approach.

To take this approach we were inspired by the work of Mumford (1994), providing
a Bayesian rationale for the image segmentation problem, the work of Gargallo
I Piracés (2008), providing a Bayesian rationale for the multi-view stereo problem,
and the work of Wanner and Goldluecke (2012), providing the first Bayesian
rationale for the IBR problem. Let us present the general Bayesian rationale to
the IBR problem.

In image-based rendering, the observed variables are the pixel values of the input
images vi, and the geometric proxy of the world g. The unknown variables are
the pixel values of the target image u. The joint probability of input images, the
geometry and target image p(vi, g, u) is a distribution on the space of all possible
images and all possible geometries. We would like to encode all our knowledge of
the problem in this distribution. Given a set of input images, the geometry and a
target image, we should be capable to measure how plausible the set is to us. For
example, if in the input images there are green trees, the target image should be
likely to contain green trees. Because defining a joint distribution is very di�cult,
approximations are done by decomposing the distribution in simpler terms:

p(vi, g, u) = p(vi, u|g)p(g), (4.1)

and
p(vi, u|g) = p(vi|u, g)p(u), (4.2)

where p(vi|u, g) is the conditional probability of the input images given the target
image and the geometric proxy. This distribution is called the likelihood and aims
to quantify the question: if the target image is u and the geometric proxy is g, how
likely is to observe vi?

The terms p(g) and p(u) are known as the prior and should quantify the question:
is the target image (or the geometric proxy) plausible?

This sort of decomposition is called a generative model and is an obvious model
to formalize inverse problems. The question we would like to answer is: given
a geometric model and a set of input images, how probable is the target image?
The answer is the posterior distribution p(u|g, vi). Using the Bayes’ theorem, the
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posterior distribution can be written with the help of the joint distribution as

p(u|g, vi) =
p(g, vi, u)

p(g, vi)
=

p(g, vi|u)p(u)R
p(g, vi|u)p(u)du

=
p(vi|g, u)p(g)p(u)R
p(g, vi|u)p(u)du

. (4.3)

This relation is very valuable because it relates what we know, the likelihood and
the prior, to what we want, the posterior. Usually, at the end, we are not interested
in the entire distribution of the target images, but a single final image would be
preferred. A common choice is to select the most probable target image, which is
called maximum a posteriori (MAP).

The MAP target image is obtained by minimizing the negative logarithm of the
probability, which is referred to as the energy:

E(u) = � ln p(u|g, vi) (4.4)

= � ln p(vi|g, u)� ln p(u)� ln p(g) (4.5)

= Ed(vi, g, u) + Er(u) + Er(g). (4.6)

The log of the prior term p(u) (or p(g)) is often called the regularizer, as it was
originally conceived to make the minimization of Ed well-posed. The log of the
likelihood term is often called the data term, as it dependents on the observed data.
In the IBR Bayesian rationale we are interested in the target image u, and the
geometry is considered to be an input. Hence the probability of g is a constant and
Er(g) does not play a role in the minimization process.

4.3.2 Novel View Synthesis Generative Model

Our goal is to synthesize a (possibly super-resolved) view u : � ! R from a novel
viewpoint c using a set of images vi : ⌦i ! R captured from general positions ci.
We assume we have an estimate of a geometric proxy which is su�cient to establish
correspondence between the views. More formally, the geometric proxy induces a
backward warp map ⌧i : ⌦i ! � from each input image to the novel view, as well as
a binary occlusion mask mi : ⌦i ! {0, 1}, which takes the value one if and only if a
point in ⌦i is visible in �. If we restrict ⌧i to the set of visible points Vi ⇢ ⌦i, it is
injective and its left inverse, the forward warp map �i : ⌧i(Vi) ! ⌦i is well defined
(see Fig. 4.3).

4.3.2.1 Ideal Image Formation Model

In order to consider the loss of resolution from super-resolved novel view to input
view, we model the subsampling process by applying a blur kernel b in the image
formation process of vi. We note v̂i as the continuous collection of rays, and apply
the point spread function (PSF) of camera i to obtain the image

vi = b ⇤ v̂i. (4.7)
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Each pixel of vi stores the integrated intensities from a collection of rays from the
scene, and the novel view u is always considered to have a higher resolution than
the input views.

Let us discard the e↵ects of visibility for a moment, supposing all points are
visible. Also suppose we have a perfect backward warp map ⌧⇤i from ⌦i to �, and
perfect input images v⇤i and v̂⇤i . Assuming the Lambertian image formation model,
the idealized exact relationship between novel view and input views is

v⇤i = b ⇤ v̂⇤i = b ⇤ (u � ⌧⇤i ), (4.8)

being � the function composition operator. However, the observed images vi and
geometry ⌧i are not perfect, and we need to consider these factors in the image
formation model.

4.3.2.2 Sensor Error and Image Error

First, we consider the sensor error "s, and we assume it follows a Gaussian
distribution on all cameras with zero mean and variance �2

s . While the sensor
noise variance �2

s and the subsampling kernel b could be di↵erent among views, for
the sake of simplicity of notation, we assume them to be identical for all cameras.

Second, we consider the error in the geometry estimate, which implies that the
corresponding backward warp map ⌧i is di↵erent from the ideal map ⌧⇤i . This
induces an intensity error "g

i

in the image formation process,

"g
i

= b ⇤ (u � ⌧⇤i )� b ⇤ (u � ⌧i). (4.9)

This error can also be written as

"g
i

= b ⇤ "̂g
i

= b ⇤ (v̂⇤i � v̂i), (4.10)

where "̂g
i

is the super-resolved intensity error.

The uncertainty related to the intensity error "g
i

is denoted by �g
i

: ⌦i ! R.
Note that both have intensity units.

Taking into account the above errors, the image formation model becomes:

vi = b ⇤ (u � ⌧i + "̂g
i

) + "s. (4.11)

While we make the common assumption that "s follows a Gaussian distribution, the
distribution of "̂g

i

is yet unknown to us. What we know is that "̂g
i

is strongly related
to the geometric error. In the next section, we study the relationship between their
distributions.

4.3.2.3 Dependency of Image Error on Geometric Error

The geometric proxy yields for each point x in ⌦i a depth measure ẑi(x) and its
associated uncertainty �̂z

i

(x), giving us a distribution of depth along the viewing
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Fig. 4.3: Transfer map ⌧
i

from image plane ⌦

i

into target image plane �. The depth uncertainty
�
zi may be di↵erent among pixels.

ray from ci, as illustrated in Fig. 4.3. We write the subsampled uncertainty as

�z
i

= b ⇤ �̂z
i

. (4.12)

We now consider the error "̂z
i

in the estimation of the geometric proxy, expressed
in world units. The previous image error "̂g

i

is dependent on the underlying
geometric error. Note that the image error has intensity units and must not be
confused with "̂z

i

having geometric units. In contrast to the blur kernel and the
sensor noise, we allow these errors to be di↵erent for each view and for each pixel
in each view, as made explicit in the notation.

We assume that the error distribution for the depth estimates is normal, "̂z
i

⇠
N (0, �̂2

z
i

). The goal is now to derive how this distribution generates a color error
distribution in the image formation process. Propagating a distribution with an
arbitrary function is not straightforward, even if in our case, this depth error
distribution is assumed to be Gaussian, and is only propagated along the epipolar
lines.

In the case where the function is monotonic (increasing or decreasing), then the
transformation of a probability distribution can be computed in closed form. So,
instead of computing the full color distribution along the viewing ray, we linearize
and consider the first order Taylor expansion of v̂i with respect to zi. This implies
that the resulting color distribution is also Gaussian, with mean µi = u � ⌧i and
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standard deviation

�̂g
i

= �̂z
i

����
@v̂i
@zi

���� . (4.13)

Using Eq. 4.8 and the chain rule, we find that

�̂g
i

= �̂z
i

����
@(u � ⌧i)

@zi

���� = �̂z
i

����(ru � ⌧i)·
@⌧i
@zi

���� . (4.14)

As �̂z
i

is always positive, the subsampled color variance �g
i

can be written as

�g
i

= b ⇤
����(ru � ⌧i) · �̂z

i

@⌧i
@zi

���� . (4.15)

MAP estimate and energy In the Bayesian formulation, the MAP estimate of
the novel view can be found as the image u minimizing the energy

E(u) = E
d

(u) + �E
r

(u), (4.16)

where the data term E
d

(u) is deduced from the generative model, and E
r

(u) is a
smoothing term which is detailed afterwards. � > 0 is the only parameter of our
method, and it controls the smoothness of the solution.

Let us consider the two error sources as independent, additive and Gaussian.
Then their sum is also a normal distribution with zero mean and variance �2

s +�2

g
i

.
The data term computed from the generative model of Eq. 4.11 is given by:

E
d

(u)=
nX

i=1

1

2

Z

⌦

i

!i(u)mi(b ⇤ (u � ⌧i)� vi)
2 dx, (4.17)

with !i(u) =
�
�2

s + �2

g
i

��1

. (4.18)

This data term is similar to the one found in the previous model from Wanner and
Goldluecke (2012), except for the factor !i(u), which can be seen as a weight that
depends both on the depth uncertainty and on the latent image u being computed.
If there were no depth uncertainty, this term would reduce to �2

s , which gives exactly
the energy found in Wanner and Goldluecke (2012). Let us remark our abuse of
notation when writing !i(u). The function !i is defined as !i : ⌦i ! R. Our
purpose with the notation is to make explicit the dependency on the latent image
u. In order to optimize the final energy we compute the Euler-Lagrange equations
of our functional. The fact that !i depends on u is important.

Interesting observations From Eq. 4.15, we can observe that the term �2

g
i

in !i(u) becomes smaller if the length of the vector @⌧i/@zi decreases. The
derivative @⌧i/@zi denotes how much the reprojection of a point xi from the original
view vi onto the novel view u varies when its depth zi(xi) changes. This vector
points towards the direction of the epipolar line on u issued from the point xi of
vi, and its magnitude decreases with the angle between the optical ray issued from
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Fig. 4.4: A depth distribution along an optical ray of camera v
i

propagates di↵erently depending
on the viewing angle of the rendered camera u or u0. The bigger the angle, the bigger the projected
uncertainty will be.

the original view vi and the optical ray from the novel view u. As illustrated in
Fig. 4.4, the term �2

g
i

thus accounts for the minimal angular deviation “desirable
property” from Buehler et al. (2001), which was not accounted for in Wanner and
Goldluecke (2012).

Let us analyze more precisely under which circumstances the weight !i(u) reaches
its maximal value 1/�2

s . There are three situations in which this occurs. The
first one is if @⌧i/@zi = 0, i.e. the depth of a point in vi has no influence on its
reprojection onto u. This can only happen if the two optical rays are identical,
which corresponds to the epipole consistency property from Buehler et al. (2001).
The second one is if ru = 0, i.e. the rendered image has no gradient or texture at
the considered point: in this case, an error on the depth estimate has no e↵ect on
the rendered view. The last situation is if ru at the rendered point is orthogonal
to the direction of the epipolar line from camera i passing through the rendered
point: a small error on the depth estimate in camera i does not have an e↵ect on
the rendered view because the direction of influence of this error is tangent to an
image contour in u.

4.3.2.4 Choosing the Prior

The prior is introduced in the Bayesian formulation (see Sec. 4.3.1) to restrain
the possible configurations of the target image. The obtained regularizer allows to
overcome the ill-posedness of the minimization problem. For example, in the super-
resolution problem, the ill-posedness can be studied by analyzing the dimension
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of the null-space of the matrix system. In the analysis performed by Baker and
Kanade (2002), the authors show that the dimension of the null-space of the matrix
system increases with an increase of the super-resolution factor. Furthermore, in
novel view synthesis, some parts of the image may not be seen by any contributing
view. The regularizer allows to fill the gaps with plausible information. Thus, the
choice of the prior has significant influence on the final result.

Very interesting priors have been developed in order to overcome specific issues
in super-resolution. For example Shan et al. (2008) propose to impose smoothness
on the final image on areas where the input images are also smooth. There are
also techniques allowing to learn generic image priors from a collection of images
Roth and Black (2005). As we deal with a potentially (very) large set of input
images, those techniques could be applied. However, the focus of this work is on
the generative model. We use basic total variation as a regularizer,

E
r

(u) =

Z

�

|Du| , (4.19)

which is convex and has been extensively studied in the context of image analysis
problems (Chambolle, 2004). The search for optimal priors is left as a topic of
future work.

4.3.2.5 Optimization

The energy from Eq. 4.16 has integrals in di↵erent domains. The first step is to do
a variable substitution of the data term of Eq. 4.17 so that both terms have the
same domain. We perform the variable substitution

(
x = �i(y)

dx = | detD�i|dy,
(4.20)

where D�i denotes the Jacobian matrix of �i.

The obtained expression is:

E
d

(u) =
nX

i=1

1

2

Z

�

| detD�i|
�
!i(u) mi (b ⇤ (u � ⌧i)� vi)

2

�
� �i dy. (4.21)

The energy from Eq. 4.16 is hard to optimize because the weights !i(u) in Eq. 4.21
are a nonlinear function of the latent image u. The Euler-Lagrange equations are
not straightforward because of this dependence. In order to overcome this limitation
we propose a re-weighted iterative method similar to the one proposed by Cho et al.
(2012). We use an estimate ũ of u, set at ũ = 1

n

P
vi � �i in the first iteration.

Then we consider !i(ũ) constant during each iteration, making the simplified energy
convex.

Furthermore, with arguments similar to Wanner and Goldluecke (2012), we can
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show that the functional derivative of the simplified data term is

dEi
d

(u) = |detD�i|
�
!i(ũ) mi b̄ ⇤ (b⇤(u � ⌧i)�vi)

�
� �i, (4.22)

where b̄(x) = b(�x) is the adjoint kernel. This functional derivative is Lipschitz-
continuous, which allows to minimize the energy via the fast iterative shrinkage and
thresholding algorithm (FISTA) proposed by Beck and Teboulle (2009). With the
solution of this simplified problem, we update ũ, thus obtaining new weights, and a
new energy. We solve it again with FISTA, and iterate. Although the minimization
problem to be solved within each iteration is convex, in general we cannot hope to
find the global minimum of Eq. 4.16.

4.3.2.6 Multiscale Image Sampling

In the work from Buehler et al. (2001), they point out that although a value of
|detD�i| > 1 can lead to oversampling artifacts (e.g, aliasing), the use of mip-
mapping avoids the need to penalize images for oversampling. As a consequence
they propose to lower-threshold their resolution penalty to 0. With our equations,
this action is equivalent to upper-threshold our weight term |detD�i| to 1. Let us
study the oversampling problem, the existing solutions and its consequences on the
energy term.

Supersampling techniques Supersampling (Heckbert, 1989) is the technique
of minimizing the distortion artifacts, known as aliasing, when representing a
high-resolution image at a lower resolution. Anti-aliasing means removing signal
components that have a high frequency that can not be properly preserved by
the new sampling rate. This removal is done before the subsampling at a lower
resolution and is known as the prefilter step. In Fig. 4.6 we reproduce the original
figure from Heckbert (1989) illustrating the ideal resampling process for a one
dimensional signal. If the prefilter step is skipped, noticeable artifacts arise, as
samples “randomly” select high-frequencies of the warped input gc(x) (see Fig. 4.5,
Nearest Neighbor).

Several methods have been proposed to reduce those artifacts. Trilinear Mip-
mapping (as implemented by OpenGL) is a commonly used prefilter technique,
where the filter is isotropic (i.e. the scaling factor is the same along two directions).
Mip-mapping is only mathematically accurate in the case where the transformation
�i is an isotropic scale factor, which is, in our case, usually not true (see Fig. 4.5
Mipmaping). McCormack et al. (1999) proposed an anisotropic prefilter method
named Feline, being 4-5 times slower than mipmapping, but producing less artifacts.
Other examples of supersampling anisotropic prefilter methods are Ripmaps or
Summed-Area Table, illustrated in Fig. 4.5. The best results should be obtained
with EWA (Heckbert, 1989), but its computational cost is about 20 times higher
than mipmapping.
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Fig. 4.5: A texture is warped with a slanted plane. The resulting warp is highly anisotropic as the
image is only compressed in the vertical direction. The images present three examples of texture
mapping and its resulting artifacts. Nearest Neighbor does not supersample and fails to preserve
the straight lines in the top of the image, thus creating artifacts know as black-and-white noise.
Mipmapping is an example of an isotropic supersampling filter. Because the warp is not isotropic,
the resulting image has important blur artifacts. Summed area table is an example of an anisotropic
supersampling filter, better suited for this warp. The resulting image has fewer artifacts. Figure
reproduced from Akenine-Möller et al. (2008).

Fig. 4.6: A discrete input f(u) is reconstructed as the continuous function f
c

(u), warped into
g
c

(x) -typo in the figure-, prefiltered into g0
c

(x) and sampled into the discrete output g(x). Figure
reproduced from Heckbert (1989).
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Impact of supersampling on the warped input images The weight | detD�i|
in equation 4.21 was devised using the assumption that u is a continuous function.
In practice, we use a discrete version ud of u for computation. In the original
paper by Wanner and Goldluecke (2012), u is assumed to be a high-resolution
super-resolved image with respect to vi. However, especially for generic camera
configurations, it may occur that the transformation ⌧i from vi to ud compresses
several pixels from vi onto one discrete pixel in ud. At these places in the image,
ud is not super-resolved with respect to vi and ⌧i, but under-resolved. Although
| detD�i| = | detD⌧i|�1 may become very large, we claim that, because of the
prefilter step in the supersampling process, there is no reason to give more weight
to these pixels.

Let us assume that we have a higher-resolution version of vi, that we name
v0i. Because v0i is more resolved than vi, the warp �0

i warping v0i into u is so
that | detD�0

i| > | detD�i|. As we can see in Fig. 4.7, v0i only provides more
frequency information than vi at locations where | detD�i < 1|. Warped values
where | detD�i| > 1 do not provide more information. We thus chose to modify the
weight | detD�i| whenever compression occurs. For a one-dimensional transform,
this would be done by thresholding the weight, so that it is less than or equal to 1.
For a two-dimensional transform, there may be an expansion along one direction,
and a compression along the other. To consider this phenomena we compute the
singular value decomposition (SVD) of D�i as D�i = U⌃V ⇤, where U and V are
orthogonal matrices, and ⌃ is a diagonal matrix with the singular values s

1

and
s
2

on the diagonal. Each of these values corresponds to the scaling performed by
D�i on orthogonal directions. Any scaling larger than 1 means that ud is under-
resolved in that direction, and we thus recompute the weight as the product of the
thresholded singular values:

| detD�i|0 = min(1, s
1

)min(1, s
2

). (4.23)

Note that since D�i is a 2⇥ 2 matrix, the singular values can easily be computed
in closed-form using the “direct two-angle method”.

Impact of supersampling on warped sensor noise The supersampling
process is also applied to the term !i(u) from Eq. 4.18 as it is composed with
the function �i in Eq. 4.21, in order to be evaluated at �. Let us study the impact
on both sensor noise �s and �g.

In Fig. 4.8 we reuse the scheme of Heckbert (1989) and add the error bars to
illustrate how an independent identically distributed error is a↵ected by the warp.
We see that in the prefilter step, areas of the signal which have been compressed
contain an attenuated error, whereas, in areas of the signal which have been
expanded the error is unchanged. The intuitive idea behind this phenomenon is
that if a pixel in ud is computed as the combination of several pixels in vi, each
having a Gaussian independent sensor noise, the more measures contribute to the
final pixel in u the less noisy the final estimate should be. In this case, having an
image v0i with a higher resolution than vi, translates into a larger prefilter kernel b0
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Fig. 4.7: A signal ṽ
i

is sampled with two di↵erent sampling rates: vd
i

and v0
d

i

. The sampling rate
of v0d

i

is higher than vd
i

. The discrete input is reconstructed, warped, prefiltered and sampled. The
di↵erence in sampling only creates di↵erences in the discrete output at locations where the warp
expands the signal (| detD⌧ | > 1 or | detD�| < 1).

and thus a higher reduction of the error.

When |detD�i| > 1, the error in the image is proportionally reduced by the super-
sampling factor |detD�i|. For a one-dimensional transform, this would be done by
dividing the warped error with the supersampling factor. For a two-dimensional
transform, we reuse the singular values s

1

and s
2

on the diagonal of the SVD
decomposition of the D�i to compute the warp of the error �2:

�2 � �i =
�2

| detD�i|00
, (4.24)

where
| detD�i|00 = max(1, s

1

)max(1, s
2

). (4.25)

The proposed reasoning is valid for the sensor noise �s, defined at the pixel level
on the images vi. However, the error "g

i

(Eq. 4.9) associated with �g, arises from
an error in the warp. It is yet unclear how this warp error is a↵ected by the
supersampling method.
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Fig. 4.8: A discrete input with error (ṽd
i

+ �
s

) represented by a sinusoidal signal is warped with a
function ⌧ . First we reconstruct the continuous input from the discrete samples with error. Then
we warp the reconstructed input. Our warp compresses part of the signal and expands another part.
The prefilter step b0 filters out the high-frequencies and preserves the low-frequencies. The error is
thus reduced where the signal is compressed, and stays unmodified where the signal is expanded.

In our image formation model, the error "g
i

is defined as the di↵erence between
the u values warped with the perfect warp ⌧⇤, and the u values warped with the
estimated warp ⌧ . By definition, the error "g

i

is equal for all pixels vi that are
warped into the same u location. This error cannot be represented anymore with
error bars as we did in Fig. 4.8, because the error "g

i

corresponds in fact to a
systematic vertical shift of the warped signal. Because the warped values under
the prefilter kernel b0 have the same systematic shift, the resulting prefiltered signal
still contains the same systematic shift. The error "g

i

associated with �g is thus
una↵ected by the supersampling method.

Final energy with consideration of the supersampling process With the
consideration of the weights modifications introduced by the supersampling process,
the data term of the energy from Eq. 4.21 can be then rewritten as

E
d

(u) =
nX

i=1

1

2

Z

�

| detD�i|
�2

s + | detD�i|00(�2

g
i

� �i)
�
mi (b ⇤ (u � ⌧i)� vi)

2

�
�� dx (4.26)
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where we use the fact that

| detD�|0| detD�|00 = | detD�|, (4.27)

as min and max from Eqs. 4.23 and 4.25 cancel out.

Let us point out that if �g
i

= 0, the obtained energy is equal to the one proposed
by Wanner and Goldluecke (2012). In their case, even with the proper consideration
of the supersampling, there is no reason to threshold | detD�|, as the supersampling
factor introduced by the foreshortening e↵ects is compensated by the reduction of
the sensor noise.

In addition, let us recall that Buehler et al. (2001) proposed to threshold the
resolution penalty to zero, because they claimed that there is no need to penalize
images for oversampling. Indeed, we have shown that there is no reason to penalize
them. Moreover, if one considers the sensor noise, they should be (marginally)
preferred over an equal resolution image, because the supersampled sensor noise is
smaller. This subtle detail was overseen in Buehler et al. (2001).

Moreover, let us also recall that Kopf et al. (2014) proposed to penalize the
resolution sensitivity based on the ratio between the minimal and maximal singular
values, instead of the determinant of the Jacobian of the warp. They observed,
that the determinant could be small even for regions with an important stretch of
the image and proposed an heuristic to counter these undesirable e↵ects. Their
proposed heuristic does not penalize images with a higher resolution.

4.4 Simplified Camera Configuration Experiments

In order to evaluate the proposed approach we proceed in two stages. First we
conduct experiments in a simplified camera configuration. This configuration is
chosen so that the equations are simplified and allows us to validate a simplified
implementation of the optimization procedure. In the next section we consider the
fully general case, where camera poses are unconstrained. For both configurations
we perform experiments with both synthetic and real-world scenes. The synthetic
datasets allow us to validate our approach with ground truth information. The
real-world scenes allow to state that the method is also valid for actual images.

We conduct a first set of experiments in a simplified camera configuration. This
allows us to use a simplified implementation of the optimization procedure. In this
set of experiments we suppose that our cameras have a simplified configuration.
Specifically, all viewpoints are in a common plane, which is parallel to all
image planes, i.e. we are dealing with a 4D light field in the Lumigraph
parametrization (Gortler et al., 1996). The novel view is also synthesized in the
same image plane, which means that ⌧i is simply given by a translation proportional
to the normalized disparity di,

⌧i(x) = x+ di(x)(c� ci). (4.28)

The normalized disparity is expressed in pixels per world units, and is together
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with its associated uncertainty related to depth via:

di(x) =
fi

zi(x)
and �d

i

(x) = �z
i

(x)
fi

zi(x)2
, (4.29)

where fi is the camera focal length expressed in pixels.

Plugging Eq. 4.29 and Eq. 4.28 into Eq. 4.15, we derive the link between the
geometric error and its associated image error as:

�g
i

= �d
i

|(b ⇤ ((ru � ⌧i) · (c� ci)))| , (4.30)

where �d
i

models the disparity noise. Finally, the deformation term in Eq. 4.22 is

|detD�i| = |detD⌧i|�1 = |1 +rdi · (c� ci)|�1 . (4.31)

4.4.1 Structured Light Field Datasets

To validate the theoretical contribution, we compare results on two light field
datasets: The HCI Light Field Database Wanner et al. (2013), and the Stanford
Light Field Archive Vaish and Adams (2008). These datasets provide a wide
collection of challenging synthetic and real-world scenes.

In a first set of experiments, we render an existing view from the dataset at the
same resolution, without using the respective view as an input to the algorithm.
We consider two di↵erent qualities of geometric proxy: an approximate one from
estimated disparity maps (Wanner and Goldluecke, 2014), and an extremely poor
one represented by an infinite flat fronto-parallel plane in the estimated center of
the scene. We adapt �d

i

accordingly, i.e. when using the estimated disparity, we
use a value corresponding to the expected accuracy of the reconstruction method:
�d

i

= d
max

�d
min

nbLayers

, where nbLayers is the number of disparities considered by the
method. When a bare plane in the middle of the scene is used, we instead use
�d

i

= d
max

�d
min

4

. In all cases, �s = 1/255.

A second set of experiments is performed by rendering a 3⇥3 super-resolved
image from a set of 5⇥5 input views. Although super-resolution is not the main
purpose of this work, we also provide a comparison with the state of the art. As
super-resolution relies on sub-pixel disparity values, using a plane as the geometric
proxy has little interest. We only show the results obtained with the estimated
disparity maps.

4.4.2 Numerical Evaluation

In Tab. 4.1, we show the numerical results obtained by our method, and compare
them to the ones achieved with Wanner and Goldluecke (2012). We use two state
of the art image quality full reference measures. The Peak Signal to Noise Ratio
(PSNR), which computes a value in dB units. The bigger the dB value, the better
the generated signal is. We also use the Structural SIMilarity (SSIM) metric (Wang
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et al., 2004), which was developed to be more consistent with human eye perception.
Whereas PSNR relies on a per pixel local computation, SSIM considers the image
structure with the help of local windows. We report results with the distance DSSIM
based on SSIM:

DSSIM =
1� SSIM

2
, (4.32)

which has no units. The smaller the DSSIM value, the more similar both images are.
For our comparison we measure the PSNR and DSSIM values between the actual
and generated images. Although our method visibly performs better, numerical
values should be interpreted carefully. In Fig. 4.9 we show detailed closeups
illustrating the benefits or our method. As high resolution images are not available
for most of the datasets, PSNR and DSSIM values for the super-resolved images
are computed by subsampling the input images, generating the novel super-resolved
view and comparing it with the original one.

When rendering with precise geometry, both methods are roughly equivalent
with respect to PSNR and DSSIM values. These values are presented in Tab. 4.1 in
the rows Estimated disparity and Super-resolution. When the quality of the proxy
degrades, our method clearly outperforms previous work, taking advantage of the
explicit modeling of depth uncertainty. These values are presented in Tab. 4.1 in
the rows Planar disparity. As shown in the closeups of Fig. 4.9, our method better
reconstructs color edges in all configurations. Full-resolution images are provided
in the Appendix B.

4.4.3 Processing Time

Computation time when rendering at target resolution 768 ⇥ 768 with 8 input
images is on the order of 2 to 3 seconds. Computation time for super-resolved view
synthesis with a factor of 3⇥ 3 and 24 input images is around 2 to 3 minutes. All
experiments used an nVidia GTX Titan GPU.
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4.5 Experiments on Generic Camera Configuration

As stated by Wanner and Goldluecke (2012): an implementation in this generality
would be quite di�cult to achieve. We, (...) leave a generalization of the
implementation for future work.

In this section we detail the implementation of the proposed model in the generic
camera configuration. In the first subsection we detail the input generation, starting
with a set of input images, and obtaining a 3D reconstruction with its associated
uncertainty. In the second part we derive the equations of the transfer functions
and weights in general form for an unstructured configuration. In the third section
we present the datasets on which we run experiments. The fourth part presents the
obtained results including a discussion and future leads.

4.5.1 Input Generation: 3D Reconstruction and Uncertainty Com-
putation

Our algorithm needs as input a set of warping functions ⌧i and their associated
uncertainty. We will perform our experiments using an explicit geometric proxy.
However, as our method is also capable to use an implicit geometric proxy we briefly
explain in the next subsection how we would handle such an input.

4.5.1.1 Implicit Geometric Proxy from Disparity Maps

A simple example of a geometric implicit proxy is the case of viewpoint interpolation
between two rectified input cameras. A geometric proxy can be computed in the
form a disparity map between each pair of input cameras (dij), The warps ⌧

1

and
⌧
2

from the images to a virtual camera lying between the input cameras v
1

and v
2

,
at a fraction ↵ can be computed as a fraction of the disparity between the images

(
⌧
1

= ↵d
12

,

⌧
2

= (1� ↵)d
21

,
(4.33)

where d
12

is the disparity between the camera 1 and 2 and d
21

the disparity
between the camera 2 to 1. Then all necessary magnitudes for our method are
available, without the need to explicitly reconstruct the geometry.

This warp computation without an explicit geometric reconstruction can be
generalized to multiple images (Chen and Williams, 1993; Laveau and Faugeras,
1994). In their seminal work, Chen and Williams (1993) first connect the source
images to create a graph structure, in the form of a 3D lattice of tetrahedra. For each
pair of connected images, they compute a morph map, describing the 2D mapping
from one image to another. This concept is similar to the one dimensional disparity
map, but more general as cameras do not need to be rectified. Then they use the
barycentric coordinates of the target view location to interpolate among the images
attached to the vertices of the enclosing tetrahedron. The main restriction of this
approach is that the view location has to be inside the graph structure.
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Laveau and Faugeras (1994) use the epipolar geometry to establish correspon-
dences from the input images into a target image with an arbitrary location. They
first compute image correspondences between the input images, in order to calibrate
the cameras and create disparity maps. Then, with a clever use of the epipolar
geometry and 3D point triangulation, they compute the warps from the input images
into the target image.

Our method can work with those warps as input. As the uncertainty of those
warps may not be available, in Sec. 4.5.1.3 we propose possible ways to estimate it.

4.5.1.2 Camera Calibration and 3D Reconstruction in our Experiments

For our experiments we first calibrate the cameras and obtain their camera matrices
P i together with their decomposition into intrinsic and extrinsic parameters
(Ki,Ri, ti). The multi camera calibration problem has been intensively studied
(Triggs et al., 2000; Hartley and Zisserman, 2004). We use the OpenMVG
library (Moulon et al., 2013) to calibrate the cameras and obtain a first set of
correspondences. Then we use PMVS2 (Furukawa and Ponce, 2010) to extract a
relatively large set of 3D points. If the size of the reconstructed scene is large,
we use the CMVS algorithm (Furukawa et al., 2010), which subdivides the scene
in small clusters, reconstructs them using PMVS2 and then merges them together
into a final set of matches. PMVS2 also provides the normal vector associated with
each patch, providing orientation information of the scene. Then we use a Poisson
reconstruction (Kazhdan et al., 2006) to fit a mesh to the obtained point cloud with
normals. We obtain a set of 3D points pj , and a set of triangles relying them.

4.5.1.3 Modeling Geometric Uncertainty and Depth Error

Once we have a geometrical proxy, we would like to have an estimate of its
uncertainty. Unfortunately, the best state of the art algorithms in unstructured,
uncontrolled scenes (Pollefeys et al., 2008; Furukawa and Ponce, 2010; Gallup et al.,
2010) do not provide a geometric uncertainty of their estimation. In general,
they provide a confidence measure in form of a score, often associated to the
photo-consistency of the 3D point when projected into the images. As we saw in
Sec. 4.2.2.2, this score should be used with caution, because the confidence measure
from a depth estimator is unit-less, whereas the geo-uncertainty is in world units.
Although tempting, one should avoid to take the score measures as the geometric
uncertainty. However, there are other ways to obtain the geometric uncertainty.
One simple way is to consider the discretization error. For example, if the
reconstruction method computes 1D or 2D disparity values, and those disparities are
discretized in integer values, assuming an error of ±0.5 disparities seems acceptable.
Then the warp error could be approximated by the normal distribution N (0, 0.5).
In our case we use 3D points, which have been triangulated from the images. It
seems reasonable to use the uncertainty of the 3D point in the image location to
compute its geometric uncertainty.
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4.5.1.4 Computing the Geometric Uncertainty of a 3D Point

Given a triangulated 3D point from matched feature points, we can use the
uncertainty of the matching algorithm to compute the geometric uncertainty of
the 3D point. Zeisl et al. (2009) compute the location uncertainty for the feature
positions computed with the SIFT (Lowe, 2004) and SURF (Bay et al., 2008) feature
detectors. Those uncertainties are in the 2D image domain and have the form of a
2x2 covariance matrix S. The features point uncertainty can be then backprojected
into the 3D space. The generic formula to compute the resulting 3D uncertainty
by back-projecting all the matching points in each camera can be found in Chapter
4.6 of Heuel (2004). A more specialized formula for the camera projection matrices
can be found in Hartley and Zisserman (2004). Let P i be N camera matrices in
the form

P i =

0

BB@

p1i

p2i

p3i

1

CCA . (4.34)

Let yi be a 2 dimensional vector containing the image coordinates of a matched
point in the image i. Let Si be the 2x2 covariance matrix of the match in the
i’th image. Let x be the 3D point corresponding to the matched feature and x̄
its homogeneous coordinate extension. Let us consider the non-linear regression
problem 0

BBBB@

y
1

y
2

. . .

yN

1

CCCCA
=

0

BBBB@

f
1

(x)

f
2

(x)

. . .

fN (x)

1

CCCCA
+N (0,S), (4.35)

where fi(x) =

0

BB@

p1
i

·x̄
p3

i

·x̄

p2
i

·x̄
p3

i

·x̄

1

CCA and S =

0

BBBB@

S
1

0 . . . 0

0 S
2

. . . 0

0 0 . . . 0

0 0 . . . SN

1

CCCCA
. (4.36)

The maximum likelihood estimate of x is the solution to the non-linear least
squares problem:

x⇤ = argmin
x

||(f(x))>S�1f(x)||2, (4.37)

where f(x) = (f
1

(x), f
2

(x), . . . , fN (x)) and the operator > denotes the transpose
of the vector. The covariance C of x⇤ is given by

C(x⇤) = (J>(x⇤)S�1J(x⇤))�1, (4.38)

where J(x⇤) is the Jacobian of f at x⇤.
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Per Vertex Geometric Uncertainty in our Experiments To construct the
matrices of Eq. 4.38 we need to know if the vertex pj is visible on the camera i (or
not). We first compute the depth maps zi(x) : ⌦i ! R by projecting the mesh on
each view. Then, for a given vertex pj , and a camera i, we recompute its depth

(Ripj)[3] + tj [3], (4.39)

and compare it to the value in the depth map zi(x). If both are equal (up to depth
quantization noise), the vertex pj is seen by the camera i. Otherwise, the vertex pj

is not seen in the camera i. With the set of cameras we can compute the Jacobian
matrix J and its transpose J>. To construct the matrix S, in our experiments
we assume a one pixel uncertainty in the image location, and so the 2D covariance
matrices are the identity matrix: 8i Si = I. Note that in this process the resolution
of the camera is taken into account, as the uncertainty in the images is given in
pixel units. Thus when we convert pixel units into world units, a high-resolution
camera has smaller pixels than a low-resolution camera.

4.5.1.5 Computing the Geometric Uncertainty of a 3D Mesh

Once we have this per-vertex covariance we compute the geometric uncertainty in
the surface mesh. We propose to focus on the uncertainty along the direction of
the normal of the surface. The idea is that, if the surface is smooth, a variation of
the vertex position on the surface does not a↵ect much the shape of the surface.
We illustrate this idea in Fig. 4.10. This allows us to reduce the dimensionality of
the covariance matrix to 1, by only considering the uncertainty along the normal
vector. We compute the geometric uncertainty �n of the vertex p in the direction
of the normal n by projecting the covariance matrix C onto the normal direction:

�n(p,n,C) = ntCn. (4.40)

Then, the problem of interpolating the uncertainty on the mesh surface is reduced
to a scalar interpolation (�n) plus a normal vector interpolation (n).

The correct interpolation of the normal vector demands some attention. In our
implementation we perform an approximation with a linear interpolation of the
normal vectors. Given two vectors n0 and n1, their linear interpolation is

n̂
↵

= (1� ↵)n0 + ↵n1. (4.41)

The obtained vector n̂
↵

does not have a unit norm, so we have to normalize it in
order to obtain valid normal vector n

↵

= n̂↵
||n̂↵|| . This interpolation is not correct

because we are interpolating the chord in the circle, instead of the angle between
the vectors. However, the error is small for small angles and its computation is very
fast. The well known lighting technique of Phong Shading (Phong, 1975) does the
same approximation.
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C1
C2

C3

C4

�n1n1

�n2n2
�n3n3

�n4n4
p1

p3

p4

p2

Fig. 4.10: A set of vertices pj , their covariance matrices Cj , and their normal vector nj scaled
with �

nj . The global uncertainty computed with the covariance matrices (in blue), is very similar
to the one obtained with the computed covariance �

njnj (in green). We use the sub-index j to
refer a vertex. Not to be confused with i, which we use to refer the input view index.

4.5.1.6 Mapping the 3D Geometric Uncertainty to Depth Uncertainty

in the Images

The last step in the input creation is to obtain the per-pixel depth uncertainty
�z

i

: ⌦i ! R for each view i. We propose two methods. The first performs
computations locally. It allows a fast parallel computation, as each pixel can be
treated independently, but disregards global e↵ects, e.g. potential occlusions of other
parts of the mesh. The second approach is global and takes into account the full
mesh in the computations. While more accurate, the computational cost of the
second method is approximately the double, as we need to render the 3D mesh
twice.

Local computation Let p be the first intersection between the viewing ray
corresponding to the pixel x and the 3D mesh, as illustrated in Fig. 4.11. Together
with the vertex p we obtain its (possibly interpolated) normal vector n and the
geometric uncertainty along the normal vector direction �n. If we consider the mesh
to be locally planar (Fig. 4.11a), the depth uncertainty as seen from the viewpoint
i can be computed using the angle ↵ between the normal and the viewing ray. We
note the explicit dependence with ↵(x,p,n). Then the pixel uncertainty at x in
the view i is

�z
i

(x) =
�n

sin(↵(x,p,n))
. (4.42)

Fig. 4.11b illustrates a limitation of this approximation, when the geometry of the
mesh is not planar. The interactions between the di↵erent vertices are not captured
by the local approximation of the geometric uncertainty.

Global computation: the Geometric Variations In order to take into
account the global geometry we propose to use what we name geometric variations.
We consider the computed mesh to be the initial mean mesh. Then we propose to
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�nn

p

�zi(x)

x

�nn
p

�zi(x)

x

unaccounted

uncertainty

a) b)

Fig. 4.11: a) Locally approximating the surface with a planar proxy. The per view uncertainty
depends on the angle between the viewing ray and the normal. b) A failure case where the local
approximation does not capture the global uncertainty of the mesh.

inflate/deflate the mesh by translating each vertex along the direction defined by its
normal vector. The translation amount is the product of an inflate/deflate scalar
� 2 R with the geometric uncertainty of the vertex �z

j

. The new set of vertices v�
j

is defined as
v�
j = vj + ��z

j

nj . (4.43)

The edges defining the neighbors of the vertices are not modified.

As we considered the depth uncertainty to be Gaussian along the normal
direction, we can restrain � to a small interval (��, �+). For example taking
� 2 (�2.57,+2.57) allows us to create a volume with a 99% probability to contain
all the actual vertices. The size of the � domain is arbitrary and can be chosen by
fixing a probability value. However, the obtained pixel uncertainty varies depending
on the probability value. We will discuss later in the section the choice of this
parameter.

Let us now compute the geometric variations of the mesh with �� and �+. For
each of both new geometries we can compute the depth maps for each input view
z�i : ⌦i ! R. Then, for each pixel x 2 ⌦i, the di↵erence between the computed
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depths can be used as an estimator of the pixel uncertainty

�z
i

(x) =
|z��i (x)� z�

+

i (x)|
(�+ � ��)

. (4.44)

Note that the variation of a mesh by moving the vertices may create topological
problems, e.g. some triangles orientation may be reversed or some holes in the mesh
may disappear. Even though we use small values of � in the vertex displacements,
those artifacts can (and do) arise. Our goal is to compute a volume in which the
surface elements are with a high probability, by di↵erentiating the depth maps of
both variations. The topological artifacts are not a problem to the computation of
this di↵erence.

With this global computation, the problem illustrated in Fig. 4.11b is taken into
account. The uncertainty of a vertex is a↵ected by the neighboring vertices. Let
us remark that pixels near an occlusion border have a large depth uncertainty, as
depth values switch from front to back depths.

From this last remark it is obvious that even if the geometric uncertainty is
Gaussian, the obtained depth uncertainty along the viewing ray is no longer
Gaussian. The computed 3D covariance matrix C is a Gaussian approximation of
the uncertainty. Its projection along the normal vector n is therefore also Gaussian.
Moreover, the per pixel uncertainty computed with the planar approximation of the
mesh, is still Gaussian. However, in the general case, the global pixel uncertainty
computed with the geometric variations is not Gaussian anymore. We are fully
aware of it, but for the sake of simplicity of the generative model, in the rest of this
work we continue considering this uncertainty as if it was Gaussian.

Filtering the Depth Uncertainty in the Images The mesh vertices computed
by the Poisson reconstruction (Kazhdan et al., 2006), are not necessarily the same
as the PMVS2 vertices (Furukawa and Ponce, 2010). In general, there are more
mesh vertices than PMVS2 vertices. Ideally, the reconstruction uncertainty should
be computed on the PMVS2 vertices, but propagating the uncertainty from vertices
to a mesh is not easy. This is why we compute the uncertainty directly on the mesh
vertices. However, when we compute the depth uncertainty in the images, we would
like to know if the computed vertex uncertainty is likely to be from a PMVS2 vertex
or not. In other words, if the vertex was “invented” by the Poisson reconstruction
we know its geometric uncertainty is high. Our computed geometric uncertainty
(Sec. 4.5.1.4) should not be used for those vertices. To do so we filter the depth
uncertainty values with a maskM : ⌦i ! [0, 1]. We first project the PMVS2 vertices
to the images, and obtain a binary mask: the pixel value is zero if no PMVS2 vertex
projects near it; the pixel value is one if at least one PMVS2 vertex projects near
it. A binary mask example is shown in Fig. 4.12c. The near value could be deduced
from the size of the PMVS2 vertex patch, but this information was not available
when we conducted the experiments, so we used a fixed threshold. Of course it
would be possible to create M as a smooth mask, by assigning to each pixel a value
inversely proportional to its distance to a PMVS2 vertex projection. To create
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a) b)

c) d)

Fig. 4.12: a) original image. b) computed depth uncertainty in the images, low uncertainty is dark
(the statue), high uncertainty is bright (the trees on the right). Note the high uncertainty values
on the depth discontinuities of the statue. c) PMVS2 vertices projections in the images. d) filtered
depth uncertainty in the images.

the filtered depth uncertainty in the images �̃z
i

, we filter the depth uncertainty in
the images �z

i

from Eq. 4.44 with the binary (or smooth) mask. Pixels which are
not near a PMVS2 vertex projection, are assigned a high uncertainty value �max.
Pixels near a PMVS2 vertex projection keep the computed value. Moreover, for
valid values of the mask, we also threshold the �z

i

to �max, as we do not want to
penalize a plausible geometry more than an “invented” one.

�̃z
i

= min (�z
i

,�max)M + �max (1�M) . (4.45)

If the mask M is smooth we perform a linear interpolation and if the mask is binary,
we threshold the values. Fig. 4.12 illustrates the filtering process.

Relation between Depth Uncertainty in the Images and the Continuity
desirable property The proposed method in Sec 4.5.1.4 to compute the depth
uncertainty as seen from the input view, provides an insight into the continuity
desirable property (Buehler et al., 2001). Let us recall the property description: “the
contribution due to any particular camera should fall to zero ... as one approaches
a part of a surface that is not seen by a camera due to visibility.” As we saw, pixels
near an occlusion border have a higher uncertainty due to the di↵erence in the ��
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depth map and the �+ depth map. Thus the corresponding weight in the final image
(Eq. 4.18) is very small. However the transition between the occlusion area and
the visible area is not smooth, because we computed the di↵erence of the depth
maps between only two variations. A smooth depth uncertainty can be achieved by
performing multiple geometric variations and doing a weighted sum of the obtained
results:

�̂z
i

=

�+R

��
p(�)��

z
i

d�

�+R

��
p(�)d�

, (4.46)

where ��
z
i

is given by Eq. 4.44 and p(�) is a probability density function given by a
normal distribution N (0, 1). In practice, we have to choose a discretization step to
approximate the integral with a finite sum as well as the limits of the integral. The
higher the discretization, the smoother the transition between occlusion and visible
areas is, as we illustrate in Fig. 4.13. The computational cost linearly depends on
the number of discretizations used for the computation, and the computation only
needs to be done once, as we only need to store the per pixel geometric uncertainty.

Note that other authors enforce this disocclusion penalty by setting a double
threshold (Buehler et al., 2001; Raskar and Low, 2002; Takahashi and Naemura,
2012). A first threshold allows to classify a depth change in the images as a
discontinuity edge. A second threshold establishes the allowed maximal distance
T , in pixel units, between a pixel and the detected discontinuity edge in the image.
Pixels closer than this distance from the edge are penalized. Note that when using
multiple images, the parameter T should be adapted depending on the view. For
example, if the images are not at the same distance from the geometric element
creating the depth discontinuity, the distance T should be higher for cameras
closer to the geometry, and lower for cameras farther away. This consideration
is automatically taken into account by Eq. 4.46.

In our method, we neither need a threshold to classify a depth change as
discontinuity nor a maximal distance threshold T . Instead, we have to set the
volume probability driving �� and �+ as well as a discretization step, which are
the parameters needed to approximate the continuous function of Eq. 4.46. In our
experiments we use a 99% volume probability and 6 geometric variations. Moreover,
if one only wants to penalize pixels in occluded regions, as proposed by Raskar and
Low (2002), the geometric variations can be done by setting �� = 0 in Eq. 4.46. By
tuning the volume probability and the number of discretization steps the continuity
desirable property can be adjusted.

Let us clarify that in order to enforce the continuity desirable property, the
filtering stage should be performed with a smooth mask M(x). With a binary
mask, the continuity created with the geometric variations would be broken.

Let us also note that although we found an insight into the continuity desirable
property near the occlusion borders, we do not have yet any evidence enforcing
the continuity near the borders of the image. In Sec. 4.5.2.5 we will discuss this
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a) b)

Fig. 4.13: Detail of the depth uncertainty in the images computed with a) 2 geometric variations
b) 6 geometric variations. Near an occlusion border, the uncertainty is smoother as we increase
the number of geometric variations to compute it. As a consequence, the weights from Eq. 4.18
smoothly fall to zero as pixels approach an occlusion border. The “continuity” desirable property is
fulfilled.

phenomenon.

4.5.1.7 Closure on input generation

Let us summarize the generation of the input for our algorithm, starting from the
input images:

1. Calibrate the cameras using the input images (Moulon et al., 2013): P i,Ki,Ri

and ti.

2. Estimate a 3D point cloud (PMVS2/CMVS) (Furukawa et al., 2010; Furukawa
and Ponce, 2010).

3. Estimate a 3D mesh (Kazhdan et al., 2006): pj , nj and triangles.

4. Compute the depth maps zi : ⌦i ! R+ with the mesh on each camera.

5. Identify the cameras where the vertex pj is visible using the depth maps zi.

6. Compute the per vertex uncertainty Cj using the set of visible cameras, and
its projection into the normal direction �n (Sec. 4.5.1.4 and 4.5.1.5).

7. Compute the per pixel depth uncertainty �̂z
i

: ⌦i ! R+ using geometric
variations and filtering (Sec. 4.5.1.6).

Before the next section, let us just remind that our method is independent from
the reconstruction process. Any geometric proxy with its associated geometric
uncertainty is a valid input. Moreover, as most current reconstruction methods do
not provide a geometric uncertainty, we proposed a simple method to estimate it.
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4.5.2 Unstructured View Synthesis Model

The novel view is defined with a set of camera parameters matrices Ku, Ru, tu, and
their camera matrix P u = Ku(Ru|tu). The input views parameters are Ki, Ri, ti,
and their camera matrix P i = Ki(Ri|ti). From the geometrical proxy we obtained
the depth map of each view i, zi : ⌦i ! R+. In the first subsection (4.5.2.1) we
compute the set of backward warps ⌧i for each input view i, warping a point xi 2 ⌦i

to x 2 �. We compute as well the associated visibility maps mi : ⌦i ! {0, 1}, and
the inverse warps �i : � ! ⌦i. Once we have the warps, in the next subsections
we compute the derivatives with respect to depth (4.5.2.2) and the derivatives with
respect to space (4.5.2.3, 4.5.2.4, 4.5.2.5). All those terms are needed to compute
the weight factors of our energy (Eq. 4.16), which depend on | detD�| (Eq. 4.22)
and @⌧

i

@z (Eq. 4.15).

4.5.2.1 Computing the Forward and Backward Warps

In order to establish the warp functions we use the geometric transformations
introduced in Sec. 3.1. Given a point xi on the image i, we transform it into
the image u with the reconstruction matrix described in Sec. 3.1.7. As we have a
depth value zi(xi) for each point, it is now more convenient to use the reconstruction
matrix given by Eq. 3.24, defining the “standard” disparity representation d = 1

z
proposed by Okutomi and Kanade (1993). Let us briefly recall it. Given a camera
matrix P i and its parameters Ki, Ri and ti, their associated reconstruction matrix
is

P̃ i = K̃iEi, with K̃i =

 
Ki 0

0t 1

!
and Ei =

 
Ri ti

0t 1

!
. (4.47)

The matrix Ei is a 3D rigid-body (Euclidean) transformation and K̃i is the
full-rank calibration matrix. When working with the reconstruction matrix, the
normalization is done by dividing by the third element of the vector to obtain
the normalized form xi = (xi, yi, 1, (zi(xi, yi))�1). The matrix P̃ i is a full-rank

invertible matrix. Its inverse P̃
�1

i maps a point x̃i = (xi, yi, 1, (zi(xi, yi))�1) on the
camera into a 3D point p̃W in the world,

p̃W = P̃
�1

i x̃i (4.48)

Hence, starting with a point on camera i, we can transform it to the camera j by

using both camera matrices P̃
�1

i and P̃ j with

x̃j / P̃ jP̃
�1

i x̃i, or their decomposition x̃j / K̃jẼjẼ
�1

i K̃
�1

i x̃i. (4.49)

In our case, the homogeneous version ⌧̃i of the warp ⌧i : ⌦i ! � can be written
as a 4⇥4 matrix T̃ i, using the reconstruction matrices P̃ i and P̃ u of the cameras i
and u:
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T̃ i = P̃ uP̃
�1

i . (4.50)

As we are only interested in the final position of the warped point, we can discard
the last row of T̃ i, and write the resulting matrix using a row vector notation.
Moreover, to simplify the notation, let us drop the camera index i and write

T =

0

BB@

1 0 0 0

0 1 0 0

0 0 1 0

1

CCA T̃ and T =

0

BB@

t
1

t
2

t
3

1

CCA . (4.51)

T is a 3⇥4 matrix and t
1

, t
2

and t
3

are 4 dimensional vectors. Then the image
warp of a point x̃i = (xi, yi, 1, (zi(xi, yi))�1) is

⌧i(x̃i) =

✓
t
1

· x̃i

t
3

· x̃i
,
t
2

· x̃i

t
3

· x̃i

◆
. (4.52)

The inverse function �i = ⌧�1

i , is defined in the domain of visible points Vi. It
warps points from � into ⌦i. Its 4⇥4 matrix B̃i can be straightforwardly written
by inverting T̃ i:

B̃i = P̃ iP̃
�1

u . (4.53)

Again, let us drop the camera index i to simplify the notation and write

B =

0

BB@

1 0 0 0

0 1 0 0

0 0 1 0

1

CCA B̃ and B =

0

BB@

b
1

b
2

b
3

1

CCA , (4.54)

where B is a 3x4 matrix and b
1

, b
2

and b
3

are 4 dimensional vectors. The forward
warp of a point x̃u = (xu, yu, 1, (zu(xu, yu))�1) is

�i(x̃u) =

✓
b
1

· x̃u

b
3

· x̃u
,
b
2

· x̃u

b
3

· x̃u

◆
. (4.55)

4.5.2.2 Derivative of the Warp with respect to Depth

We now compute the derivative of the warp ⌧i with respect to the depth: @⌧
i

@z .
We evaluate this derivative on a point x̃i = (xi, yi, 1, (zi(xi, yi))�1). Let us recall
the notation v[i] to refer to the i’th element of the vector, and let us simplify the
notation by writing zi instead of zi(xi, yi), If we develop the dot product in Eq.
4.52, we can write the coordinates of the warped point as
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⌧i(x̃i) =
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(4.56)

Then its partial derivative with respect to z is

@⌧i
@z

(x̃i) =
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4.5.2.3 Jacobian of the Warp

We now write the derivatives with respect to the image space @⌧
i

@x and @⌧
i

@y . Let us
recall that the depth of a point on the image is given by the function zi : ⌦i ! R.
The terms @z

i

@x and @z
i

@y will appear in the computations as a consequence of the

chain rule. With an abuse of notation we also write zi(x̃i),
@z

i

@x (x̃i) and
@z

i

@y (x̃i). We
make this dependence explicit by writing
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The components (k = 1, k = 2) of the partial derivatives with respect to x are
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The components (k = 1, k = 2) of the partial derivatives with respect to y are
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With Eqs. 4.59 and 4.60 we obtain the 2 ⇥ 2 Jacobian matrix. As the inverse

transfer function �i can be written by using the inverse matrix T̃
�1

i = B̃i, all the
previous computations can be directly done on the forward warp �i. One just needs
to replace ⌧i with �i, t with b, x̃i with x̃u and zi : ⌦i ! R+ with zu : � ! R+

in Eq. 4.59 and 4.60. From the Jacobian matrix, the expressions |detD�i| and
|detD�i|00 (Eq. 4.25) can be computed.

Finite di↵erences on image domain vs. approximated mesh normal The
deformation weight |detD�i| relies on the computation of the partial derivatives @z

u

@x

and @z
u

@y . These can either be computed by finite di↵erences in the image domain
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�, or directly from the normal vector to the surface. In general both methods
yield similar numerical results. However, important di↵erences may appear at the
disocclusion borders. In this case the discrete image di↵erence compares two depth
values from a foreground and a background location, thus yielding an approximation
of the geometry with a very slanted plane with respect to the view, e.g. almost
parallel to the viewing rays. As the partial derivatives @z

u

@x and @z
u

@y values may be
very high, it is common in the implementation to threshold the computed values
with an arbitrarily chosen maximum. This e↵ect does not appear when we compute
with the interpolated 3D normals, because the interpolation is performed with
nearby vertices. Moreover, the mesh resolution may be higher than the image
resolution, thus providing better estimate of the warp deformation.

In the case where the geometric proxy is given as a 3D model, and not as a
set of depth maps, the use of surface normal vectors has another computational
advantage. To compute the depth maps we need a first render pass, and then a
second pass to compute the finite di↵erences. Locally approximating the surface
with the normal vectors allows us to compute the derivatives in a single pass.

4.5.2.4 Depth of an Image Point with the Tangent Plane to the

Geometry Surface and its Derivatives

Let us consider the tangent plane to the geometric proxy surface at the world point
pW given by the normal vector nW , and a camera with parameters K,R and t.
Let us compute the depth map z(x) at a generic image point x = (x, y) defined by
this tangent plane, as well as its spatial derivatives: @z

@x and @z
@y .

First we move into the camera frame, where the camera is centered at the origin
and looking into the positive z axis. In this frame the 3D point pC and the
transformed normal nC are

pC = R pW + t and nC = R nW . (4.61)

Points p on the plane fulfill

(p� pC) · nC = 0. (4.62)

The camera viewing ray through an image point (x, y) can be written in
parametric form as

p� = � K�1x̄, (4.63)

with � 2 R+. The intersection of the plane with the viewing ray is obtained by
substituting Eq. 4.63 in Eq. 4.62 and solving for �. We obtain

�p(x) =
nC · pC

nC · K�1x̄
and pp(x) = �p(x) K

�1x̄. (4.64)

The depth map z(x) is given by the third coordinate of pp.

Let us now introduce k
1

,k
2

and k
3

, denoting the three columns of the matrix
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K�1:
K�1 =

⇣
k
1

k
2

k
3

⌘
(4.65)

The partial derivative of pp with respect to x is
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@�p
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(x)K�1x̄+ �p(x)k1

, (4.66)

where
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The partial derivative of pp with respect to y is

@pp

@y
(x) =

@�p
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(x)K�1x̄+ �p(x)k2

, (4.68)

where

@�p

@y
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(�nC · pC)(nC · k
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(nC · (K�1x̄))2
. (4.69)

The Eq. 4.59 and 4.60 can now be computed by setting @z
i

@x (x̃) =
@p

p

@x (xi, yi)[3],
@z

i

@y (x̃) =
@p

p

@y (xi, yi)[3] and substituting the generic parameters K,R, t with the
ones used in the ⌧i computation: Ki,Ri and ti.

4.5.2.5 Integrating the Optics Distortion in the Transfer Function

The input cameras of our algorithm are generic. For the sake of simplicity, we
assumed that they follow a pinhole camera model, which supposes that there is
no optical distortion in the image formation process. Distorted images may come
from fish-eye or panoramic cameras, which cannot be properly represented by a
pinhole camera. Most of the Image Based Rendering methods (Shum et al., 2007;
Kopf et al., 2014) assume that the images are first undistorted as a pre-processing
step, usually during calibration. However, the correction of the optical distortion
may add some blurriness in the corrected images, as some pixels, specially near the
borders of the image, can be (strongly) stretched. Our method considers the warp
function ⌧ from one image to the other, so, it is possible to integrate the optical
distortion correction into the warp function. This allows us to work with the raw
distorted images of the camera, instead of their undistorted version.

Let us first introduce a generic radial distortion model, and then analyze the
impact of the undistortion warp into the weights from Eq. 4.26.

We note a generic radial distortion warp from an undistorted pixel xu into a
distorted one xd as D. Its form is

D(xu) = e+ �(||x� e||)(x� e), (4.70)
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where xu is the undistorted pixel, e the center of distortion and � : R+� > R+

the distortion ratio. � is in general assumed to be monotonic (Hartley and Kang,
2007), allowing to define the inverse warp U(xd) = xu. The undistortion warp
transforms a distorted pixel xd into an undistorted one xu.

Now that we have characterized the optical distortion and undistortion warps,
let us integrate them into our energy equations (Eq. 4.26). A generic warp ⌧di
taking into account the optical distortion can be written as the composition of the
undistortion warp Ui, the pinhole camera warp ⌧i, and the distortion warp Du of
the rendered image u:

⌧di (x
d) = (Du � ⌧i � Ui)(x

d). (4.71)

In general, we do not want to render an image u with optical distortion. To assume
no distortion in the u image does not substantially change the following equations,
and of course, one could chose to generate images with distortion. Equations get
just less readable because of the double function composition, so we consider Du to
be the identity warp and

⌧di (x
d) = (⌧i � Ui)(x

d). (4.72)

The forward warp map �d
i is then

�d(xu) = (Di � �i)(xu). (4.73)

The weight !i in Eq. 4.18 depends on the derivative of ⌧di with respect to z. The
derivative of ⌧di with respect to z at xd is equal to the derivative of ⌧ with respect
to z at xu, because Ui does not depend on the depth of the point:

@⌧di
@z

(xd) = (
@⌧i
@z

� Ui)(x
d). (4.74)

This can easily be seen by rewriting Eq. 4.56 with Ui(xdi , y
d
i ) instead of xi, yi and

deriving Eq. 4.57.

We are also interested in the Jacobian of the forward warp map �d
i . The Jacobian

of a composition (Di � �i) is given by the product of their Jacobians, (evaluated at
the proper points)

D(�d
i )(xu) = DDi(�i(xu)) D�i(xu). (4.75)

In addition, the determinant of a matrix product is given by the product of
determinant of each matrix, so

| detD�d
i | = | detDDi|| detD�i|. (4.76)

The integration of the optical distortion in our generic warps is quite simple.

4.5.2.6 Closure on Transfer Functions and Partial Derivatives

With the obtained image warps and their derivatives we can compute all the
necessary terms of our energy Eq. 4.16, including the weight factors | detD�| and
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!i(x).

4.5.3 Datasets

We numerically evaluate the unstructured and generic version of our method with
scenes from three di↵erent datasets. In a first set of experiments we use two scenes
from a dense multi-view stereo dataset (Strecha et al., 2008): fountain-P11 and
castle-P19. Their dataset provides a set of unstructured images, together with
their calibration matrices Pi. The fountain-P11 dataset contains 11 images, and
the castle-P19 dataset 19. We also created the dataset Hercules with images taken
in the “Chateau de Vizille” gardens, in France. This dataset consists of 52 images.
In Fig. 4.14 we show several images of the datasets.

For each dataset we consider di↵erent qualities of geometric proxy. We first
consider the best reconstruction available for the dataset, that we label G0. For
the dataset fountain-P11 we use the 3D reconstruction created from laser scans,
which are unfortunately not publicly available for the dataset castle-P19. For the
dataset Hercules we use all 52 images to create the 3D reconstruction with CMVS
(Furukawa et al., 2010). Although this is our “best” reconstruction, we should avoid
to address it as “ground truth”, as the reconstruction created with laser scans may
contain holes in the geometry, and the 3D reconstruction obtained with CMVS does
not represent a “ground truth”. In addition to G0, we create 3 di↵erent geometric
proxys with “less reliable” qualities. For Hercules we reduce the number of images
in the reconstruction by half, i.e. 26. For each dataset we create the geometry G1
with the full resolution images, the geometry G2 with the images downsampled
with a ⇥2 factor, and the geometry G3 with the images downsampled with a ⇥4
factor. For each geometry of each dataset, we compute the per pixel uncertainty as
described in Sec. 4.5.1.4, 4.5.1.5 and 4.5.1.6.

4.5.4 Numerical Evaluation

To compare the results obtained with our method, we implemented the Unstructured
Lumigraph Rendering (ULR) (Buehler et al., 2001), as well as the generalization
of the method proposed by Wanner and Goldluecke (2012) (SAVS) into the
unstructured camera configuration. The parameters for URL were chosen as
described in the original paper: K = 4 and � = 0.05. The parameter � leveraging
the data term and the prior in the energy from Eq. 4.16 are set to 0.05. All
parameters are kept constant for all datasets.

To evaluate the methods we render a view from the dataset, without using it as
an input for the algorithm.1 We measure the PSNR and DSSIM values between the
actual and the generated images. In the unstructured configuration it is common
that some parts of the rendered image are not seen by any other camera in the
dataset. In our computation these parts of the image are “inpainted” by the TV
prior (Sec. 4.3.2.4). To avoid evaluating the methods in these areas, we use a

1

For these experiments we could not render images at a higher resolution due a problem in the

implementation of the code. We hope to solve this problem in the near future.
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Fig. 4.14: Images from the 3 dataset used for evaluation. First row: fountain-P11 dataset. Second
row: castle-P19 dataset. Third and fourth row: Hercules dataset.
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visibility mask to only evaluate PSNR and DSSIM values on pixels which are at
least visible in one image of the dataset.

4.5.5 Processing Time

The resolution of the rendered views are 1536⇥ 1024 for the fountain-P11 and the
castle-P19 datasets, and 2376 ⇥ 1584 for the Hercules dataset. The computation
time is decomposed in three steps. The input generation (camera calibration,
reconstruction and per pixel uncertainty computation) is done o✏ine and may take
in the order of 1 to 2 hours. The computation of the warps ⌧i and the magnitudes for
the weights is performed in real time. Those magnitudes are | detD�i|, | detD�i|00,
@⌧

i

@z , as well as the angular deviation and resolution penalties of the ULR. The
energy minimization step is on the order of 10 to 12 seconds for our method and
1 to 2 seconds for SAVS, for an input of 10 images at 1536 ⇥ 1024 resolution. All
experiments used an nVidia GTX Titan GPU.

4.5.6 Generic Configuration Results

In Table 4.2 we show the numerical results obtained with the three methods. For
the large majority of rendered images the best performing algorithm is either ULR
or the proposed one. This result is coherent with the fact that those algorithms
do consider the angular deviation in their equations. However, as with previous
experiments, numerical results should be interpreted carefully, as the di↵erence in
PSNR and DSSIM between the di↵erent methods is relatively small.

In Fig. 4.15 we show detailed closeups illustrating the benefits of the inclusion of
the angular deviation in the method. The generalization of the method proposed by
Wanner and Goldluecke (2012) produces noticeable artifacts, which become more
visible when the geometric proxy becomes less accurate (G3). As the angular
deviation is not taken into account, all images are blended together. Moreover,
images with an important angular deviation may have a higher weight because of
the foreshortening e↵ects accounted by | detD�i|.

The ULR method performs globally at best. As only a few images (K = 4) are
considered in the final blend, the generated images are sharper. The small number
of views in the final blend allows to avoid most of the artifacts arising on the SAVS
or our Proposed method. However, as illustrated in Fig. 4.16, to only blend a low
number of views can also create important artifacts, specially if the geometric proxy
is not accurate (G3).

Our method provides sharp images similar to those obtained by ULR. The
generated images still include artifacts at the same locations as SAVS. Because
the angular deviation is taken into account, those artifacts are reduced with respect
to SAVS but not completely removed. Even if the contribution of a camera is close
to zero, if the proposed color is very di↵erent from the other cameras, the obtained
blend might be wrong (see Fig. 4.17).

Although the results provided by our method are globally close to ULR, some
artifacts appear at certain locations (see Fig. 4.18). Those artifacts arise because the
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term �g
i

computed with the ru can rapidly change from one pixel to its neighbor.
Thus the balance between the angular deviation and the resolution is not continuous
in the image domain and might abruptly change from one pixel to another. This
artifacts are specially noticeable when the geometric proxy is not accurate and the
proposed colors by the input images are very di↵erent.

4.5.7 Discussion and Hints for Improvement

The benefits of the proposed method with respect to SAVS are evident from the
obtained results. Generated images are sharper and contain less artifacts.

The benefits of the proposed method with respect to ULR are, in terms of the
generated images, less evident. Surprisingly, the adaptability of our method to the
precision of the geometric uncertainty did not translate into a better final image as
it did in the structured configuration. Further investigation is needed to understand
if the proposed uncertainty estimation was not accurate enough or if the problem
lies in the model itself.

An important advantage of our method with respect to ULR is to avoid the
parameter K defining how many cameras should be used in the final blend. As
pointed out by other techniques (Davis et al., 2012; Kopf et al., 2014), when
generating a sequence of images by moving the virtual camera, strong transition
artifacts arise in ULR when switching from one set of cameras to another. In our
method, those transitions are smooth as the complete set of images is considered.

Let us summarize the three main issues unsolved by our technique. The
dependency on the latent image u implies two main drawbacks. The first is the
appearance of artifacts illustrated in Fig. 4.18. The second is that we need an
iterative reweighted method in order to minimize the energy, which is considerably
longer compared to the minimization of Wanner and Goldluecke (2012), and pretty
much longer compared to the direct blend performed in Buehler et al. (2001). In
order to address these issues we propose directions for future work.

Dependency on the latent image The dependency on the latent image u was
very helpful in the Lightfield configuration, allowing to better render color edges.
However, in the general configuration, the local computation of ru generated
artifacts where input colors did not agree (see Fig. 4.18). In order to minimize
those artifacts one could try to smooth the computation of ru. Neighboring pixels
would have more similar values and di↵erent camera contributions would become
more homogeneous. Although this smoothing step could improve the results, it
would imply the addition of a parameter in our model, thus breaking our e↵ort to
achieve a parameter-free method.

Another way to avoid the dependency on the latent image would be to only
consider the length of @⌧

i

@z corresponding to the length of the projected epipolar line
and disregard the color variation. The benefit of color edges would be lost, but
the weights of neighboring pixels would be more consistent. Again, although this
simplification could improve the results we do not have yet any physical evidence
to sustain such a choice.
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Original SAVS ULR Proposed

Fig. 4.16: Detail of a generated image 05 of the fountain-P11 dataset with the geometry G3.
Because of the poorly geometric reconstruction, no method is capable to render the right corner of
the fountain at the correct location. ULR uses only a few number of views and the corner of the
fountain appears in the background. In the images generated by SAVS and our method, as more
input images are blended together, the corner in the background fades away.
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Fig. 4.17: Blending incorrect colors. First and second rows: closeup of the input images warped
into the target image with the geometry G3: v

i

� �
i

. Third row: closeup of the obtained results
with the three methods. Incorrect colors are proposed for blend by input images 9 and 10. ULR
only uses views 4,5 and 7 and avoids major visual artifacts. SAVS and Proposed use all the views.
Visible artifacts are introduced by the views 9 and 10.
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Original SAVS ULR Proposed

Fig. 4.18: First row: detail of a generated image 05 of the fountain-P11 dataset with the geometry
G3. Second row: detail of a generated image 06 of the castle-P19 dataset with the geometry G3.
The geometry is poorly reconstructed and the proposed colors by the input images are very di↵erent.
Artifacts appear in the generated images with our proposed method. The balance between the angular
deviation and the resolution abruptly changes from one pixel to another, due to the value of ru.
The final color can also be very di↵erent between neighboring pixels.

Direct vs. Variational Framework In our method the weights are deduced
using the Bayesian formalism. However, if super-resolution is not important, they
could be used in a direct framework as proposed by Buehler et al. (2001). In our
exploratory work (Pujades and Devernay, 2014), we tested the impact of the weights
and the method when rendering a new image in the case of viewpoint interpolation.
We observed that for the two camera case, blending the images with very di↵erent
weights leads to very similar results. From the results in Sec. 4.5.6, it seems obvious
that the weighting factor should yet have a strong relevance on the quality of the
rendered image when using more than two input images. However it is unclear if
the variational framework would provide better results than the direct framework.
Future work should explore how the obtained results for viewpoint interpolation
extend to the multiple camera configuration. If a direct blend provides equivalent
results to the variational framework, computation times could be reduced to nearly
real-time.

Dealing with outliers An important issue of the proposed model is that outliers
are not taken into account. In our method we do not include an artifact removal
process as it is common in the DIBR literature (Zinger et al., 2010). As we illustrate
in Fig. 4.17, artifacts arise due to incorrect colors proposed by the input views. Note
that this issue is common to all presented approaches (Wanner and Goldluecke,
2012; Buehler et al., 2001). Results obtained by Buehler et al. (2001) have less
artifacts because of the small value of the parameter K.

In general, when solving a least squares problem, an outlier strongly modifies the
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final estimate. However, the scientific community has developed approaches to deal
with outliers (Fischler and Bolles, 1981). For example, in the direct blend of Buehler
et al. (2001), rather than to consider the weighted mean of the input colors, one
could use a mean-shift clustering technique (Cheng, 1995) to extract more robust
candidates, as proposed by Fitzgibbon et al. (2005). Another possibility to compute
the color of the final pixel could be to select one color proposed by an image, rather
than to blend the input colors. The blending problem would then be transformed
into a labeling problem, where each pixel of the final image would be associated
with the index of the input image (Agarwala et al., 2004). The proposed energy
could still be used in such a framework.

Better generative models Although all those possibilities could improve the
results, it remains unclear how they could be justified in a formal way. The
research of better generative models must continue. An obvious lead, is to drop
the Lambertian assumption. Extending the model to non-Lambertian scenes is
crucial but quite hard. One would need to include general BRDF and lighting
information to correctly model the transformation between input and novel views.

Each one of these leads could be a direction to be pursued in future work.

4.6 Relation to the Principles of IBR

Now that we have presented our method and evaluated its performance, let us
carefully establish the links of the proposed energy with the “desirable properties”
of IBR stated in Buehler et al. (2001).

As we see in Eq. 4.26, the weighting factor for each view is composed of two
terms. The term |detD�i| is the same as in Wanner and Goldluecke (2012) and
corresponds to a measure of image deformation: it is the area of a pixel from u
projected to vi. We can formulate the intuition behind it as how much does the
observed scene change when the viewpoint changes?

The term !i(u) corresponds to the depth uncertainty, as was explained in
Sec. 4.3.2.3. The intuition behind this is: how much does the observed scene change
if the measured depth changes?

4.6.1 Use of Geometric Proxies & Unstructured Input

The geometric proxies are incorporated via the warp maps ⌧i, and the input can
be unstructured (i.e. a random set of views in generic position). Let us recall, that
although the blur kernel b and the sensor noise �s where considered identical for
all cameras to simplify notation (Sec. 4.3.2.2), they are fully general. All cameras
may have di↵erent resolutions and di↵erent sensor noise. Moreover, we do not only
take into account the geometric proxies, but their associated uncertainty. This fact
allows our method to cover most of the “IBR Continuum” (see Sec. 4.2.1). Our
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method can take advantage of a very precise geometry from laser scans or depth
sensors, and adapt to a very coarse geometric approximation (see Sec. 4.4.2).

4.6.2 Epipole Consistency

Epipole Consistency is satisfied. As explained in Sec. 4.3.2.3, the weighting factor
!i(u) is maximal as soon as the optical rays from xi and x are identical, so that if a
camera has its epipole at x, then the contribution of this camera at x via the !i(u)
term is higher. Although Buehler et al. (2001) claim that the ideal algorithm should
return a ray from the source image, if one takes into account the sensor noise, the
sampled ray from the source images could not be perfect. In our opinion, if more
rays can help in the ray reconstruction they should be used, specially if resolution
sensitivity varies between the contributing cameras. Of course if one considers the
sensor noise to be strictly zero, then the contribution of an optical ray with epipole
consistency is infinity.

4.6.3 Minimal Angular Deviation

This heuristic is provided by �g
i

from Eq. 4.15. If all other dimensions are kept
constant (resolution, distance to the scene, etc.), then the magnitude of the vector
@⌧i/@zi in Eq. 4.15 is exactly proportional to the sine of angle ↵i between the optical
rays from both cameras to the same scene point.

Fig. 4.19 illustrates two cameras at c
1

and c
2

with the same focal distance f . We
choose their focal plane to be parallel to the segment between c

1

and c
2

to enforce
both cameras to have the same resolution. Their distance z to the scene is thus the
same. The geometric uncertainties from each camera are also chosen to be equal,
�
1

= �
2

. With this configuration the angular deviation ↵i is a function of the optical
center distance c� ci and the depth z of the observed element tan(↵i) =

c�c
i

z . The
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Fig. 4.19: Two cameras, at c
1

, c
2

with focal length f , observing the same point at depth z. In order
to analyze the impact of the angle into the final weight we disregard the foreshortening e↵ects. The
only di↵erence between the views is the angle of observation ↵

1

and ↵
2

. The resulting magnitude
of @⌧i

@z

is smaller if the angle is smaller. It is exactly proportional to the sine of the angle ↵
i

.
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derivative of ⌧i with respect to z can be computed as the limit

lim
"!0

⌧i(z + ")� ⌧i(z � ")

2"
, (4.77)

or as a function of the angle ↵i

lim
"!0

f

✓
z sin(↵i)

z2 � "2 cos2(↵i)

◆
= sin(↵i)

f

z
. (4.78)

The weight !i as a function of ↵i is then

!i =
1

�s2 +
⇣
�z

i

sin(↵i)
f
z

⌘
2

. (4.79)

The ratio between the contributions of two cameras, i and j, is then

!i

!j
=

�s
2 +

⇣
�z

j

sin(↵j)
f
z

⌘
2

�s2 +
⇣
�z

i

sin(↵i)
f
z

⌘
2

. (4.80)

Buehler et al. (2001) state that source image rays with similar angles to the
desired ray should be used when possible. Their proposed angular deviation penalty
linearly depends on the angle ↵i, whereas in our case, the penalty depends on the
square sinus of the angle. The proposed weights stronger penalize distant angles.

4.6.4 Resolution Sensitivity

This heuristic is followed by the term |detD�i|, which measures the surface of a pixel
from u projected to vi. The larger the resolution of camera i, the bigger this surface,
so that resolution sensitivity is properly handled. In addition, in Sec. 4.3.2.6 we have
studied the e↵ects of oversampling in the obtained weights. We have formalized the
threshold proposed by Buehler et al. (2001), by stating that the proper handling
of the oversampling allows not to penalize higher resolution cameras. In addition,
when we take the sensor noise into account, we have shown that a higher resolution
camera should be (marginally) preferred over an equal resolution image, because
the supersampled sensor noise becomes smaller.

4.6.5 Equivalent Ray Consistency

“Through any empty region of space, the ray along a given line-of-sight should be
reconstructed consistently, regardless of the viewpoint position (unless dictated by
other goals ...)” Buehler et al. (2001). This is trivially satisfied by our framework,
since the weights vary continuously when the novel view camera moves along an
optical ray (through the continuous variation of the warp maps ⌧i). The contribution
of all views smoothly scales by taking into account the foreshortening e↵ects.



4.6. Relation to the Principles of IBR 111

4.6.6 Continuity

The continuity principle in IBR demands that the final rendered image varies
continuously with the camera parameters of the original views. This implies that
there are no seams at visibility boundaries between cameras, which may happen near
the borders of the intersection of the field of view of each camera with the scene, or
at depth discontinuities seen from each camera. The typical heuristic to enforce this
form of continuity is to lower the contribution of a camera near a visibility boundary
or the boundary of its field-of-view Raskar and Low (2002); Buehler et al. (2001).
Our equations do not explicitly satisfy this property and the obtained weights do not
fall to zero when approaching a visibility boundary. However, during the creation
of our model, some observations pointed in that direction. Let us review them.

In Sec. 4.5.1.6 we saw that the continuity constraint near a visibility boundary
could be enforced by the uncertainty values provided by the input. If the per
pixel depth uncertainty �z

i

is computed with the proposed geometric variations
(Eq. 4.46), pixels near a visibility boundary have a higher geometric uncertainty,
and their contribution to the reconstruction of the other rays is lowered. Only
when reconstructing rays with a very small angular deviation its contribution may
increase due to the fact that the high per pixel depth uncertainty �z

i

is compensated
with the low angular value (see Eq. 4.79).

While the per-pixel depth uncertainty can enforce the continuity along visibility
boundaries of the scene, we found no evidence on why the contribution of a pixel
at the boundary of the field-of-view should smoothly fall to zero. The continuity
heuristic proposed by Buehler et al. (2001) reducing the contribution of an image
along the visibility boundaries of the scene aims at reducing the seams in the
transitions between the di↵erent images. A similar problem has been addressed
in the literature of image stitching. For example, the method proposed by Levin
et al. (2004) proposes to work in the gradient domain, in order to overcome the
photometric inconsistencies between the images. Instead of focusing on how the
contribution of an image could diminish along the visibility boundaries, future work
could explore how the generative model could be extended to be applied to the
gradient domain, and thus directly address the problem of the transition seams.

Although the per-pixel depth uncertainty fulfills the continuity desirable property
near visibility boundaries, our equations have a fundamental problem that might
violate it at any location. The term ru can strongly vary from one pixel to another,
and thus the intra-image smoothness described in Raskar and Low (2002) is not
fulfilled. As we saw in Fig. 4.18 artifacts are introduced. Is Sec. 4.5.7 we discussed
possible leads to avoid the dependency on the latent image. However, since we
claim to have a completely physics-based Bayesian formulation, any operation on
the equations should be sustained by a physical explanation, which we are still
missing, and is part of our future work.

Note that the prior term in the energy reduces the problems, most notably visual
artifacts, which are due to not handling the continuity properly. However, a prior
on the novel views cannot completely solve the continuity problem, which depends
on the scene and camera geometry.
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4.6.7 Real-Time

The final “desirable property” is for the method to be real-time. Our method is
not yet real-time, mainly because of the computational complexity of the MAP
estimate: 2 to 3 seconds are necessary to render a 768⇥768 image from 8 source
images.

If super-resolution is not important, instead of solving the full MAP problem,
it seems reasonable to use a direct method together with real-time regularization
in the form of inpainting methods to obtain an acceptable result. As discussed in
Sec. 4.5.7, rendering times could be reduced to nearly real-time. Moreover, as both
the resolution algorithms and the hardware architectures are evolving quickly, much
better performance can be expected in the next few years.

4.6.8 Balance Between Properties

One of the advantage of our method with respect to Buehler et al. (2001) is that the
balance between the di↵erent properties is not handled by user-defined parameters,
but implied from a formal deduction. Imagine a configuration with two cameras:
one with low minimal angular distance but high resolution sensitivity change, and
another with high minimal angular distance but low resolution sensitivity change.
Which one should contribute more to the final image? In Buehler et al. (2001), the
angular distance is preferred to the resolution sensitivity by a ratio of 1/0.05 = 20
(Hallway dataset). In our equations, these variations are completely physics-based.
An angular deviation of �↵ between views is penalized proportionally to 1

sin

2

�↵
,

due to the change in �2

g
i

. A foreshortening e↵ect or resolution di↵erence causing an

image scale factor s is penalized proportionally to 1

s2
, due to the change in |detD�i|.

The balance between these factors is properly handled by taking into account the
sensor noise �2

s .

An exception is the weight �, used in the prior term. Note that this is common in
all work on image analysis based on Bayesian principles: since there is currently no
meaningful way to obtain a prior distribution on the space of images, one needs to
work with regularization by objective priors. Of course one could also use existing
methods (Roth and Black, 2005) allowing to estimate this prior directly from the
input images, thus obtaining a completely parameter-free model.

4.7 Summary of Contributions

The main contribution of this chapter is to establish the first formal link between the
heuristics proposed in the recent decades for novel view synthesis, and the energy
deducted by a physics-based generative model.

This model can be used to solve the generic problem which consists in generating a
novel view from a heterogeneous set of input images, and a geometric description of
the scene (called a geometric proxy), which can be either explicit (i.e. the estimated
geometry of the 3D scene) or implicit (i.e. a set of correspondence maps between
original views and the novel view).
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Part of our contribution is the analysis of how the proposed model fulfills
almost all the guidelines established by Buehler et al. (2001). The proposed
generative model provides a formal description of the intuitive heuristics behind
these guidelines. The key element to this unification is to take into account
the error in the estimated geometric proxy when rendering a new image. We
have extensively discussed how our physics-based model explains the reasons why
some important heuristics were picked up in the first place. The theoretical
benefits of the model outperform state of the art by overcoming its limitations.
Moreover, the experiments conducted on synthetic and real images show that our
method improves state of the art performance in terms of rendered image quality
in the Lumigraph configuration and obtains state of the art performance in the
Unstructured Lumigraph configuration.

We also discussed how future work can address the remaining issues of the
proposed method. An important observation is that if the 3D reconstruction
method or the 2D-2D image correspondence method provides not only depth
estimates, but also the associated depth uncertainty, the image-based rendering
method can benefit from this information to create better novel views. This should
thus be a goal when developing new (implicit or explicit) reconstruction methods
aimed at IBR.





5
The Stereoscopic Zoom

In this chapter, we explore two di↵erent possibilities to create stereoscopic shots
with long focal lengths. Although the title of the chapter is “The Stereoscopic
Zoom”, technically, the word “zoom” only describes the possibility of a lens to
change its focal length. Lenses are either labeled as “fixed focal length” or “zoom”,
independently of the magnitude of their focal length. However, in the cinema and
television, most lenses equipped with a long focal length are zooms, because the
cameraman needs to adjust the focal length to create the desired image frame.
Thus, along the chapter we (ab)use the word “zoom” to refer to a long focal length.

To demonstrate the di↵erent possibilities to create a stereoscopic zoom, we focus
on a simplified layout of the scene, which consists of a main subject of interest and
a background farther away. It is a classic scenario where the zoom is used in 2D.
An example shot arises in sports, where we want the closeup of the player when he
concentrates just before the penalty kick, or when he just missed an easy goal with
the hands on his head. Another example shot could arise in a live rock concert,
where we would like to have a closeup shot of the singer at a sensitive moment, or
a closeup of the guitarist when performing a solo. Because the physical cameras
can not disturb the performance, their location is constrained. In our simplified
configuration we assume that the cameras can not be “on the field”, and must stay
outside at a certain distance.

In Fig. 5.1 we illustrate a sketch of this layout representing a player on the field
with the bleachers on the background. The distance between the cameras and the
subject of interest and the background are zs and zb respectively. Our goal is to
establish the position ci of each actual camera together with its intrinsic parameters
to render the stereoscopic images following the director’s stereoscopic mise-en-scene.
We constrain the points ci on the z = 0 plane, and note ci = (xi, yi, 0), where xi is
the horizontal displacement and yi its height.

In order to generate stereoscopic images we need guidance on the nature of the
shot we want to create. We focus on two di↵erent stereoscopic mise-en-scene. The
first approach is guided by the intention to “get closer” to the scene, thus the
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Fig. 5.1: Simple layout of a scene: a main subject of interest, and a background. Actual cameras
can only be placed outside the field. The distance between the actual camera location and the subject
of interest is z

s

. The distance between the actual camera location and the background is z
b

.

director places two virtual cameras on the field. Our goal is then to generate the
images of the virtual views. The second approach is guided by the intention to add
perspective deformations to the final stereoscopic images. The shot composition
starts from a 2D frame and 3D annotations, which describe the depth of the
scene elements and their roundness. In both approaches we use the IBR technique
described in Sec. 4.3 to generate a pair of images fulfilling the desired properties.

5.1 Being On the Field!

5.1.1 The Mise-en-Scene

The first stereoscopic mise-en-scene would be the natural placement of the cameras
if it were possible: the director would place them right on the field. The location
is chosen together with the virtual filming configuration: the baseline bv, the
convergence distance Hv and the convergence window width Wv. As we saw in
Chapter 3, the choice of this parameters is strongly dependent on the projection
configuration (b0, H 0,W 0).

To build the stereoscopic mise-en-scene the director has to decide on several
artistic choices. We illustrate with an example how these choices are guided.
The first choice is usually the depth of the subject in the cinema. It would be
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Fig. 5.2: Top view of the acquisition and projection of the scene where the camera placement is not
constrained. The director freely chooses to use the homothetic setup to keep a constant roundness
factor. We illustrate the result of the stereoscopic mise-en-scene: a) scheme of the scene layout
and the placement of the virtual cameras. b) scheme of the perceived depth from stereopsis by the
audience in the projection room.

recommended to choose its depth to be close to the screen, as it is the most
comfortable stereoscopic viewing zone (see Fig. 2.4), but, of course, any variant
is possible if the director desires a specific depth e↵ect or depth transition. The size
of the subject of interest in the image, i.e. the framing, establishes the width Wv.
Once Wv is chosen, the director can for example decide to use the canonical setup
to avoid ocular divergence (see Sec. 3.2.1.1). The baseline bv = b0Wv

W 0 is established.
Let us recall that this configuration has the advantage to create a linear mapping
of the depth between the cinema and the projection room, as well as a constant
roundness ⇢(z) = W

v

H0

W 0H
v

for all depths. The last choice is the convergence distance
Hv, together with the camera placement. As we assumed that the convergence
plane is set at the subject’s depth, Hv is equal to the distance of the camera to the
subject. With H 0,W 0 and Wv fixed, the choice of Hv defines the roundness of the
shot ⇢(z) = W

v

H0

W 0H
v

. For example, to obtain a natural shoot with roundness ⇢ = 1
the director could decide to shoot with the homothetic setup (see Sec. 3.2.1.2):

b0

bv
=

H 0

Hv
=

W 0

Wv
(5.1)

The roundness choice finishes the camera placement and the setting of all acquisition
parameters. In Fig. 5.2 we illustrate the virtual camera placement as well as the
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perceived depth from stereopsis. The focal length of the both cameras is fv = sH
v

W
v

,
where s is the sensor width.

Let us remark, that the proposed virtual camera placement is only an example.
For instance, we saw in Sec. 3.2.3 that if the target screen is not wide enough,
the vergence-accommodation conflict may establish a stricter limit on the shooting
baseline bv than the canonical setup. We saw also that the director may
choose to create an ocular divergence up to 0.5�. The stereoscopic mise-en-scene
process is totally unconstrained. Our approach is generic with respect to the
chosen parameters and applies to any virtual camera placement and stereoscopic
configuration. Let us now study how the acquisition cameras should be placed in
order to obtain the desired images.

5.1.2 The Quadri-Rig

To place the actual cameras, we use our proposed Bayesian IBR approach described
in Sec. 4.3. The terms involved in the energy Eq. 4.26 guide our decisions to
find the actual camera matrix P i. The image resolution is guided by |detD�i|
and |detD�i|00, and the optical ray angles are taken into account by the depth
uncertainty term �g

i

from Eq. 4.15. Once the camera positions and parameters are
deduced, we analyze the obtained visibility mi of the scene elements.

To establish the camera matrix of the actual cameras we want the contributing
weight of the acquired image to be maximal when rendering the final image. For
each individual camera, if we consider that it is the only one capturing the subject
of interest, the magnitude

| detD�i|
�2

s + | detD�i|00(�2

g
i

� �i)
(5.2)

can be considered as a quality measure of how well the virtual image is rendered
with the acquired image. An image with a higher weight would be preferred over
another with a lower weight.

Note that another question would be how to place the camera in order to improve
the virtual view if we already had a set of cameras. This is an interesting and
di�cult question, that we leave for future work. Moreover, to properly compute
the camera matrix P i, one would need to have an estimate of the geometric shape
of the subject of interest gs and the background gb. With those geometries, the
camera position and focal length could be estimated as the values maximizing the
resulting weight over all the surface elements x of the geometry, i.e. solving for

argmax
P

i

Z

g

| detD�(P i)|
�2

s + | detD�(P i)|00(�2

g
i

(P i) � �i)
dx. (5.3)

We leave the investigation of how to optimize the camera position and parameters
depending on the acquired geometry as future work.

In our work, we place the cameras one by one, and instead of jointly optimizing
the position of the camera and their focal length with a given geometric proxy, we
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proceed in two stages. First we consider both the subject and the background to
be flat, and compute the focal length with respect to the virtual camera resolution
fv. We select the actual focal length so that |detD�i| = 1. Then we consider
both the subject and the background to be punctual, and compute their position
with respect to the value �g

i

. We compute the camera position c minimizing �g
i

,
which, as we saw in Sec. 4.3.2.3, accounts for the minimal angular deviation. In all
computations �s is considered constant and independent of the camera focal length
and location.

All cameras are assumed to look in the z-direction, i.e. their rotation matrix R is
the identity, and their principal point is adjusted depending on the camera location
to obtain the final frame.

Because the scene can be roughly decomposed in two layers, we propose to use
two actual cameras to generate each virtual view. To generate the left virtual view
we propose to use a camera to acquire the subject of interest and another one
to acquire the background. Symmetrically, to generate the right virtual view we
propose to use a camera to acquire the subject of interest and another to acquire
the background. We note the positions of the actual cameras ckj = (xkj , y

k
j , 0), and

their focal lengths fk
j , with j 2 {l, r} and k 2 {s, b}. The subscripts l and r stand

for left and right and the superscripts s and b stand for subject and background.

We name the resulting acquisition system the “Quadri-Rig”.

5.1.2.1 Choosing the Focal Length

Our resolution goal can be written as |detD�i| = 1 or |detD�i|00 = 1. We could be
tempted to acquire an image with a higher resolution in order to obtain a higher
weight. For example, we could use cameras with a higher resolution, or, if the
subject does not fill the whole width of the image, we could frame it closer, so that
we capture it with a higher resolution.

Several considerations point against those decisions, both from a practical and
theoretical point of view. The first one is that the resolution of the target image
is usually the highest resolution we can actually capture. For example, if 4K
(4096⇥2160) cameras are available for the acquisition, the target resolution will be
most probably 4K. We do not want to assume that we can shoot with 4K cameras

zr
zv

z = 0

Fig. 5.3: Two cameras with di↵erent focal lengths acquiring a green object with the same resolution.
The object has the same size on both images. A red object farther away from the green object has
a bigger image size in the camera with a longer focal length.
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Fig. 5.4: Acquiring the di↵erent parts of the scene with the same resolution as the virtual camera.
f
v

is the focal length of the virtual camera. a) The focal length fs
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acquires the subject of interest
at depth z

s

with the same resolution as the virtual camera. b) The focal lenght f b

r

acquiring the
background at depth z

b

with the same resolution as the virtual camera.

and render HD (1920⇥1080) images. The second consideration is that although it
could be possible to frame the subject with a smaller size than Wv, the subject may
almost fill the whole vertical extent of the image. Thus framing the subject closer
could lead to the loss of some important part of the subject. The last consideration
is that, as we saw in Sec. 4.3.2.6, the use of supersampling only marginally increases
the contribution of the camera with a higher resolution by reducing its sensor noise.
Thus, theoretically and practically, there is no need to capture the image at a higher
resolution.

To obtain an image of a flat element with an equivalent resolution at a distance
zr with a focal length fr and at a distance zv with a focal length fv, the relation
between the focal lengths is

fr = fv
zr
zv

. (5.4)

Note that this computation is only valid for a flat element at a punctual depth.
Elements in front (or behind) this depth have an image size increase (or decrease)
depending on the distances zr and zv as shown in Fig. 5.3. Because all cameras
have the same sensor and the same resolution, the image size of an object can be
directly translated into the acquired resolution of the object. The relation between
the image size in pixels of an object at depth z in both images is given by the non
linear function

wr = wv
zr

z + zr

z + zv
zv

, (5.5)
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where wr is the image size in pixels of the object in the actual camera and wv is
the image size in pixels of the object in the virtual camera.

Because of the symmetry in the configuration, both left and right cameras
acquiring the subject of interest have the same focal length

fs = fv
zs
Hv

, (5.6)

and both left and right cameras acquiring the background also have the same focal
length

fb = fv
zb

zb � zv
. (5.7)

We illustrate the subject and background focal lengths in Fig. 5.4. Note that if the
acquired background is at infinity, then fb is equal to fv. If the subject of interest is
at a di↵erent depth than the convergence distance of the virtual camera, the actual
focal length of Eq. 5.6 should be of course adapted using this depth instead of Hv.

5.1.2.2 Choosing the Camera Positions

Our camera position goal can be written as the camera configuration minimizing
the term �g

i

from Eq. 4.15:

argmin
f,x,y

✓
b ⇤
����(ru � ⌧i) · �̂z

i

@⌧i
@zi

����

◆
. (5.8)

The equation can be decomposed in three terms: (ru � ⌧i) accounting for the local
variation in color of the target image, �̂z

i

accounting for the geometric uncertainty
and @⌧

i

@z
i

accounting for the angular deviation.

The angular distribution of the color gradient ru in an image can be measured,
and does not have, in general, a uniform angular distribution (Torralba and Oliva,
2003). A dominant angle in the distribution, e.g. created by strip patterns or
fences, would allow us to place the actual camera so that the epipolar lines with
respect to the final view are orthogonal to the dominant angle. However, the angular
distribution of the image may evolve over time, thus requiring the acquisition device
not only to be aware of the image gradients, but also to adapt to them. Hence, we
consider the camera placement to be independent of the first term (ru � ⌧i). The
geometric uncertainty �̂z

i

could be dependent or independent of the camera position
and focal length, depending on the method to estimate the geometric uncertainty.
For example, if the geometry is estimated with a depth range camera, the camera
position and focal length do not a↵ect �̂z

i

, whereas if the camera is used to compute
the geometric uncertainty (see Sec. 4.5.1.3), then �̂z

i

depends on the camera position
and focal length. For the sake of simplicity, we assume the geometric uncertainty
to be independent of the camera position and focal length and leave this line of
joint estimation as future work. Hence, our goal to minimize �g

i

is equivalent to
minimize @⌧

i

@z
i

. The generic warps ⌧i from the actual camera to the virtual camera

can be computed as described in Sec. 4.5.2.1. Then, we only need to minimize @⌧
i

@z
i
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Fig. 5.5: Diagram of the obtained baselines for the “Quadri-Rig”. a) The actual cameras acquiring
the subject are aligned with the position of the subject of interest s and the virtual cameras. The
triangle defined by (s, v

l

, v
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given by Eq. 4.57.

In order to avoid the need of a geometric estimate of the acquired scene element,
we assume it to be punctual. It is then straightforward to see that the camera
position minimizing @⌧

i

@z
i

is the one fulfilling the epipolar consistency: the camera
position must be aligned with the optical center of the virtual camera and the
position of the element to render. As explained in Sec. 4.3.2.3, as soon as the rays
from both cameras are the same, the contribution of the input camera is maximal.
Thus the position of the actual camera can be computed as the intersection of a
3D line and a plane. The line is defined by the optical center of the virtual camera
and the 3D point representing the acquired scene element. The 3D plane is defined
by the 0 depth plane, where the actual cameras can be placed.

The remaining question is how to choose the point representing the acquired scene
element. A natural choice seems to select the center of the subject as its simplified
3D position. The center of the subject of interest can be easily approximated as
the center of gravity of the 3D subject’s points seen by the camera. Similarly, the
center of the background can be chosen as the center of the background seen by
both images.

Now that we have chosen the points to align the camera to, we compute the
camera positions of the “Quadri-Rig”. Let the left and right virtual camera positions
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vl and vr be on the 0 height coordinate and at depth zv:
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The subject of interest is at the location s = (xs, ys, zs) and the background at a
distance zb from the cameras. The left camera position acquiring the subject of
interest csl is the intersection of the line defined by s and vl and the 0 depth plane.
Symmetrically, the right camera position csr is given by the intersection of the line
defined by s and vr and the 0 depth plane. Their expressions are
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To compute the positions of the background actual cameras cbl and cbr we consider
the point in the center of the background p = (0, 0, zb). Thus we only have to set
xs = 0, ys = 0, zs = zb and Hv = (zb � zv) in Eq. 5.10 and obtain
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In Fig. 5.5 we illustrate the camera placement of the four cameras creating the
“Quadri-Rig”.

Finally, the principal point of the actual cameras is chosen so that the camera
frustums of the actual and virtual images intersect at the correspondent depth, i.e.
background depth for the background cameras and subject depth for the subject
cameras. Next we present the obtained camera matrices of the proposed “Quadri-
Rig”.

5.1.2.3 Camera Matrices

As the rotation matrix R is always the identity we do not detail it in every
configuration. The intrinsic and extrinsic parameters of the left virtual camera
are

Kv
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BB@
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v

2

0 fv 0
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The intrinsic and extrinsic parameters of the right virtual camera are
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The intrinsic and extrinsic parameters of the left actual camera acquiring the subject
are
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The intrinsic and extrinsic parameters of the right actual camera acquiring the
subject are

Ks
r =

0

BB@

fs 0 + b
v

2

z
s

H
v

� xs
z
v

H
v

0 fs �ys
z
v

H
v

0 0 1

1

CCA and tsr =

0

BB@

� b
v

2

z
s

H
v

+ xs
z
v

H
v

�ys
z
v

H
v

0

1

CCA . (5.15)

The intrinsic and extrinsic parameters of the left actual camera acquiring the
background are
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The intrinsic and extrinsic parameters of the right actual camera acquiring the
background are

Kb
r =

0

BB@

fb 0 + b
v

2

z
b

H
v

0 fb 0

0 0 1

1

CCA and tbr =

0

BB@

� b
v

2

z
b

z
b

�z
v

0

0

1

CCA . (5.17)

5.1.2.4 Optimal Baselines

We deduced each camera location and focal length independently of the other
cameras using our findings from Sec. 4.3. However, the left and right cameras
acquiring the background, as well as the left and right camera acquiring the subject,
can be analyzed as two stereoscopic pairs. The deduced baseline to capture the
subject of interest is

bs = bv
zs
Hv

. (5.18)
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Although the position of the cameras depends on the subject position xs and ys, the
obtained baseline does not. The terms xs and ys cancel out when we compute the
di↵erences between csl and csr. Most interestingly, the same baseline was obtained
in Eq. 3.98 as we studied which baseline allowed to obtain a roundness factor ⇢ in
the projection room. If we only project the part of the images with the subject of
interest in the projection room, the audience will perceive the subject at the depth
of the screen with the desired roundness factor ⇢.

The baseline obtained for the background cameras is

bb = bv
zb

zb � zv
. (5.19)

As the focal lengths are di↵erent from the ones of the virtual cameras, it is not
straightforward to see if ocular divergence happens. If the background of the scene
is exactly a plane at depth zb, the acquired images by the background cameras are,
by construction, exactly equal to the images acquired by the virtual cameras (up
to non-lambertian deviations). Thus the perceived depth in the projection room
is the same whether we use one pair of images or the other, and ocular divergence
only arises if the director decided to. Moreover, the roundness factor of the
acquired background is the same as the roundness obtained with the virtual images.
Although, as the acuity of the depth perception decreases with the distance of the
scene elements (Howard and Rogers, 2008), it is questionable if the preservation of
the roundness in the background should be a goal in itself.

Let us note that a “roundness only” reasoning does not establish an actual
constraint on the position of the cameras, it only constrains their relative position,
the baseline. As we saw, the camera position acquiring the subject of interest
depends on the subject location s. It may happen that s and p are aligned with a
virtual camera, as we illustrate in Fig. 5.5b. Then, both left, or both right cameras
have the same location. Physically, this is not a problem, as the use of a mirror rig
allows to place two cameras with the same optical center. From a practical point
of view, to change the camera location depending on the position of the subject in
the frame may result in a too complex mechanical system. The subject should be
detected and the camera position aligned consequently. A reasonable simplification
is to fix the position of the point s at the center of the image, so that the long focal
length cameras do not have to move as the subject moves in the image.

5.1.2.5 Visibility

Even in our simplified layout of the scene, four di↵erent kinds of occlusions may
arise. The subject of interest naturally occludes some regions of the background.
We name this kind of occlusion subject-background. The subject of interest may
also occlude some parts of itself, e.g. an arm near the face can partially occlude the
face. We name this kind of occlusion subject-subject. Similarly, the background may
also occlude some parts of itself, e.g. a member of the crow in front of another. We
name this kind of occlusion background-background. The last visibility issue may
be created if an intruder enters the field of view of the actual cameras and we name
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this occlusion type intruder-scene.

Subject-Background Occlusion A background camera needs to acquire the
region of the background visible by the virtual camera. However, as the actual
camera position is farther away, the subject of interest can occlude some regions of
the background.

Let us first assume that the acquired subject of interest is convex. In Fig. 5.6a,
we mark with a green rectangle the region of the background visible in the virtual
camera and with a blue rectangle the region of the background visible in the actual
camera. If the background camera is aligned with the subject and the virtual
cameras, then the actual cameras always capture all of the needed background.
However, as we illustrate in Fig. 5.6b, if the background camera is not aligned with
the subject and the virtual camera, some part of the needed background may not
be present in the source images.

To ensure the visibility of the background, the actual cameras are restrained to a
visibility region. The area of the subject, together with the virtual camera position
define a volume. The intersection of this volume with the actual camera plane
defines the visibility region, as we illustrate in Fig. 5.6c with a pink rectangle. Any
camera on this region captures all of the needed background, and its size depends
on the size of the subject, the virtual convergence distance Hv and the distance zv
between the virtual cameras and the actual ones.

Note that although we illustrate these regions only for the x-coordinate, the same
scheme applies for the y-coordinate. In most cases, the vertical visibility is not an
issue, as the subject of interest covers the vertical center of the image. However,
there are scenarios where this constraint should not be neglected, like for example,
when we acquire a flying bat. If the animal is not framed on the vertical center
of the image, some parts of the needed background are not acquired by the actual
background cameras. To avoid background visibility issues, the operator should
always keep the animal vertically centered on the image.

If the subject is not convex, the entire needed region of the background may be
impossible to capture with a single camera. In Fig. 5.6d we illustrate the problem.
The non-convex subject is represented by two elements. The space between both
elements and the virtual camera focal length defines a background region which
needs to be acquired. The size of this region is wv and depends on the size of the
gap between the scene elements �, the depth zs and the background depth zb� zv:

wv = �
zb � zv
zs � zv

. (5.20)

The size of the background region that can be acquired with the actual camera
through both elements is

wr = �
zb
zs
. (5.21)

A single camera at a farther distance and with a longer focal length can not acquire
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a) b)

c) d)

Fig. 5.6: Subject-background occlusion. a) The virtual camera, the subject and the actual camera
are aligned. The needed background areas for the virtual camera (green regions) are correctly
captured by the actual camera (blue regions). Blue rectangles overlap the green ones. b) The
subject moves and the virtual camera, the subject and the actual camera are not aligned anymore.
The needed background areas for the virtual camera (green regions) are not completely captured by
the actual camera (blue regions). A red zebra rectangle shows the missing area. c) The alignment
constraint can be relaxed depending on the size of the subject. The borders of the subject and the
virtual camera define two rays. Any camera inside those rays (purple regions) completely acquires
the needed background areas. As soon as the actual camera is not on the regions, some background
elements are occluded by the subject. d) If the acquired subject is not convex, the central part of
the background needed by the virtual camera (green region) can not be acquired by a single camera.
The center blue region in the background is always smaller than the center green region.
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the needed region trough the space between both scene elements, because

(1� zv
zs

)
zb

zb � zv
< 1 8zs 2 (zv, zb). (5.22)

Subject-Subject and Background-Background Occlusions Similarly to the
subject-background occlusions, if the subject or the background are not convex, self
occlusions may arise. For example, an arm of the subject of interest might occlude
its face. In this case, the problem can again be illustrated with Fig. 5.6d. We just
need to consider the arm as the subject of interest and the face as the background.
If the arm is not aligned with the virtual camera and the center of the face, some
region of the face needed in the virtual image can not be acquired by the actual
camera. The same reasoning applies to background-background occlusions.

Intruder-Scene Occlusion The last occlusion scenario we need to consider is
the intruder-scene occlusion. In our approach we propose to shoot elements of the
scene with cameras that are far away from the subject and the background. We
implicitly assume that the space in-between the actual cameras and the virtual
cameras is empty. While this assumption is not very restrictive for the actual
cameras acquiring the subject of interest, it may be restrictive for the cameras
acquiring the background. The shorter focal lengths of the background cameras
may require an important free volume around the subject of interest. In Fig. 5.7
we illustrate the regions of the scene which should ideally be empty. If an obstacle
enters these frustums, the actual cameras can not capture the desired part of the
scene to be rendered.

To quantify the required free space, let us consider Ws, the width of the union
of both camera frustums acquiring the background at the depth of the subject of
interest. We illustrate Ws in Fig. 5.7b, which is given by the expression

Ws = W
(zb � zv)

Hv

zs
zb

+ bv
zb � zv
Hv

. (5.23)

To get an idea of the magnitude, let us evaluate the function with a numerical
example. Let us assume zb = 50m, zv = 25m, the convergence width W = 2m and
the virtual convergence distance Hv = 3m. We consider bv to be small (in the order
of cm) and thus ignore the additive term. Then, the width of the frustum is 9.33m.
If we are acquiring a football player, the nearest player to it should be at least 4.5m
away. While this constraint may be fulfilled in a sports settings where most of the
space in-between the subject and the cameras is free, it may not be fulfilled in a
shot in a forest in the wild.

Visibility Summary If the subject of interest is convex and at the center of
the image, and the background is also convex, the proposed “Quadri-Rig” does not
su↵er from any occlusion other than intruder-scene. However, if the background
is not convex, then background-background occlusions may arise. Moreover, if the
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Ws

zs

obstacle

?

a) b) c)

Fig. 5.7: a) The actual cameras capture the subject with the same resolution as the virtual cameras.
The zebra area must be empty to ensure the visibility of the subject. b) The actual cameras capture
the background with the same resolution as the virtual cameras. The zebra area must be empty to
ensure the visibility of the background. The width of the union of both camera frustums at depth
z
s

is W
s

. c) An obstacle enters the field of view of the actual cameras. A large region of the
background is not visible anymore.

subject is convex but not on the center of the image, subject-background occlusion
regions may also arise. Finally, if the subject is not convex, then subject-background
or subject-subject occlusions may arise. In Sec. 5.1.4 we discuss how the visibility
problem can be addressed.

5.1.3 Proof of Concept

In this section we present a proof of concept of the proposed approach. As we saw
in Sec. 4.4.2 the final quality of the rendered images depends on the precision of the
geometric proxy. Thus we created two datasets, a synthetic one where the ground
truth geometry is available, and a second dataset with images from a real-world
scene.

We name the synthetic dataset the blender lego dataset, which consists of 6
images, the 3D model used to render the images and the camera positions and
parameters. The left and right virtual images were rendered at the desired virtual
positions vl and vr. These images were used as ground truth for comparison
with the rendered images. The other four images of the dataset correspond to
the “Quadri-Rig” configuration: two images of the cameras acquiring the subject
and two images of the cameras acquiring the background. In our scene the subject
of interest was placed at the center of the images. All images were rendered at
HD resolution: 1920⇥1080. The real-world scene dataset is called real lego and
contains the same 6 images: the two virtual views and the four “Quadri-Rig”
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images. In addition, 6 other images were used to calibrate the camera positions
and to reconstruct a geometric proxy using the pipeline described in Sec. 4.5.1.
The resolution of the real-world images is 2376⇥1548. In Fig. 5.8 we illustrate the
blender lego dataset and in Fig. 5.9 we illustrate the real lego dataset.

5.1.3.1 Results

In Table 5.1 we present the PSNR and DSSIM computed values. Because of the
low number of images, all methods yield very similar results. This result is coherent
with the results obtained in Pujades and Devernay (2014). The di↵erence in the
blending weights has no significant impact on the rendered images when few images
are used in the blending. The high PSNR and DDSIM values obtained with the
synthetic dataset show that the rendered images at visible locations are accurate. In
Fig. 5.10 we reproduce the full resolution images rendered by the di↵erent methods
for the synthetic dataset. However, because the background of the scene is highly
non-convex, large regions visible in the virtual views are not acquired by any of the
four actual cameras of the “Quadri-Rig”. In Fig. 5.11 we show closeups of these
regions.

For the real-world image dataset, the computed PSNR and DSSIM values shown
in Table 5.1 are very low. In Fig. 5.12 we reproduce the full resolution images
rendered by the di↵erent methods. The poor 3D reconstruction obtained from the
input images creates important artifacts in the rendered images that we illustrate
in Fig. 5.13.

5.1.4 Quadri-Rig Discussion

We now discuss the obtained camera configuration, with its advantages and
limitations.

5.1.4.1 Camera Position Dependency on the Rendering Method

The “Quadri-Rig” camera configuration was deduced in order to maximize the
quality of the rendered virtual images following the equations obtained in our IBR

Blender Lego Dataset Real Lego Dataset

left image right image left image right image

ULR 33.93 288 33.94 290 17.12 882 16.94 889

SAVS 34.03 286 34.04 288 17.12 882 16.91 889

Proposed 34.00 287 34.02 288 17.09 884 16.90 891

Table 5.1: Numerical results for synthetic and real-world datasets. We compare our method to
Wanner and Goldluecke (2012) (SAVS) and Buehler et al. (2001) (ULR). For each rendered image,
the first value is the PSNR (bigger is better), the second value is DSSIM in units of 10�4 (smaller
is better). The best value is highlighted in bold.
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a) b)

c) d)

e) f)

Fig. 5.8: The “blender lego” dataset: a) and b) are the left and right images of the virtual
stereoscopic pair. c) and d) are the left and right rendered images with the background cameras
of the “Quadri-Rig”. e) and f) are the left and right rendered images with the subject of interest
cameras of the “Quadri-Rig”.

approach. In our study, as the computation relies on a punctual measure at an
(arbitrary) point of the image, the camera position problem is equivalent to the
proper handling of the epipole consistency desirable property from Buehler et al.
(2001). The obtained camera configuration maximizes the quality of the rendered
images not only with our IBR method, but with any other method fulfilling this
property, like for example the methods proposed by Buehler et al. (2001), Levoy
and Hanrahan (1996) or Gortler et al. (1996). Future work should study how the
camera position varies for the di↵erent rendering methods if a geometric proxy is
available for the subject of interest and the background.

Let us recall that the weight equations obtained in Wanner and Goldluecke
(2012) only take into account the resolution sensitivity. In addition, as we saw
in Sec. 4.3.2.6, we have no evidence pointing out that the resolution weight should
be thresholded: the higher the resolution of an acquisition camera, the higher its
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a) b)

c) d)

e) f)

g) h)

Fig. 5.9: The “real lego” dataset: a) and b) are the left and right images of the virtual stereoscopic
pair. c) and d) are the left and right acquired images with the background cameras of the “Quadri-
Rig”. e) and f) are the left and right acquired images with the subject of interest cameras of the
“Quadri-Rig”. g) an h) are two of the six auxiliary images used to calibrate the dataset and create
the 3D reconstruction.



5.1. Being On the Field! 133

a) b)

c) d)

e) f)

Fig. 5.10: Rendered images obtained with the di↵erent methods with the “blender lego” dataset.
a) and b) left and right images rendered with Buehler et al. (2001). c) and d) left and right images
rendered with Wanner and Goldluecke (2012). e) and f) left and right images rendered with our
method. Because few images (4) were used in the rendering, the image quality among the di↵erent
methods is very similar.

weight. This framework’s equations do not provide a practical solution to the
problem of how to chose the actual camera placement and their focal length. One
should use the highest resolution camera available, together with the longest focal
length possible. Moreover, as the resolution sensitivity desirable property does not
constraint the camera location, any camera position could be used. Thus we would
have no way to deduce the actual camera positions.

5.1.4.2 Optimal Camera Properties

In Sec 5.1.2.4 we observed an interesting result. The deduced camera positions
with our Bayesian IBR approach establish the same baseline as the one obtained
with a roundness factor reasoning presented in Sec. 3.5. In addition, the resolution
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a) b) c)

Fig. 5.11: Closeups of the rendered views. As the background is highly non convex, large areas
needed for the virtual cameras are not acquired by the actual cameras. a) and b) The black pixels
behind the crowd are not acquired by any actual camera. c) The black pixels in the inner side of
the hand of the subject of interest are not acquired by any actual camera.

sensitivity in our approach, establishes the acquisition focal length. If the element
of the scene is exactly a plane, the acquired images by the actual cameras are, by
construction, exactly equal to the images acquired by the virtual cameras (up to
non-lambertian deviations). Then the perceived depth of the element is exactly
the same for both pairs of images. Most interestingly, the resolution sensitivity
property, creates an equivalent perceived depth.

5.1.4.3 Visibility Issues

The main limitation of the proposed approach is the visibility issue. As we
described in Sec. 5.1.2.5, multiple kinds of occlusion may arise. The subject
and the background may be self-occluded, the subject may further occlude the
background, and an obstacle may even occlude the subject and the background. As
we illustrated in Fig. 5.11, both final rendered images contain important regions
where no information is available. Moreover, to avoid further occlusions, the
cameraman should frame the subject of interest at the center of the image, which
results in an important limitation of the approach. The frame is one of the most
important choices of a director and should not be constrained. Thus potentially,
even more occluded regions may appear in the final images.

A possible solution to render the occluded regions is to use other cameras to
acquire the missing texture. For example, in the setting proposed by Hilton et al.
(2011), we could expect that one of the multiple cameras could provide texture
information of the occluded region. Of course this solution is not straightforward,
as registering wide baseline cameras is not easy, and a quite accurate geometric
reconstruction is needed to warp the acquired texture. While this approach may be
feasible to render occluded regions of the background, it might be of little help to
acquire the parts of the subject su↵ering from subject-subject occlusions.

In regions where no additional texture information is available, then an inpainting
algorithm should be used to fill the empty regions of the rendered image.
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a) b)

c) d)

e) f)

Fig. 5.12: Rendered images obtained with the di↵erent methods with the “real lego” dataset. a)
and b) left and right images rendered with Buehler et al. (2001). c) and d) left and right images
rendered with Wanner and Goldluecke (2012). e) and f) left and right images rendered with our
method. Because of the poor geometric proxy important artifacts are visible in the rendered images.
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Fig. 5.13: Closeups of the rendered views of the “real lego” dataset. In the top row we show
closeups of the ground truth acquired virtual image. In the bottom row we show closeups of the
rendered virtual image. As the 3D reconstruction is very poor, important visual artifacts arise.

5.2 Distort the World!

In this section we present a second possibility to create stereoscopic shots with long
focal lengths. Our approach is guided by a di↵erent stereoscopic mise-en-scene,
which is inspired by the 2D to 3D conversion methods. The director establishes
depth and roundness constraints on the scene elements. Then we study how these
constraints translate into potentially multiple acquisition settings. Once the images
are acquired, they have to be combined to obtain a pair of images creating the
desired stereoscopic e↵ect. Finally we present a proof of concept and discuss the
obtained configuration and results.

5.2.1 The Mise-en-Scene

The first thing the director needs to chose is the 2D frame of the image. To do so,
the director places a camera on the possible locations and adjusts the focal length
to frame the subject of interest. Then, for each relevant element of the scene, the
director specifies the expected perceived depth in the projection room. This depth
description is usually done in disparity values, either in pixel units or in percentage
of the image width. The director is free to choose any units, as pixels can be
easily be converted into percentage and vice-versa if the resolution of the image is
available. In addition to the depth, the director’s description may also specify the
expected roundness factor of each element.

This stereoscopic mise-en-scene approach is already used in actual 2D to 3D
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conversion of feature films (Neumann, 2011). In Fig. 5.14 we illustrate an example
of an initial 2D frame and its depth annotated version. These images provide
guidance to the artists to create the full depth map.

At the time of the stereoscopic mise-en-scene the director is most probably
unaware of the actual depth of the scene. However, the provided depth description
establishes constraints relating the actual depth ze of a scene element and its
expected disparity d0e (or perceived depth z0e) at the projection room. These
constraints can be written as z0(ze) = z0e. Similarly, a roundness description of
the element establishes a constraint ⇢(ze) = ⇢e. Thus the depth annotated 2D
frame can be translated into a set of constraints on the perceived depth function
z0(z) (Eq. 3.33) and the roundness factor function ⇢(z) (Eq. 3.62). As we still are
in the acquisition stage, a natural question arises: which cameras allow to acquire
the scene elements with the desired properties?

5.2.2 The Multi-Rig

Our goal now is to translate the depth and roundness factor constraints into a
(potentially) multi-view acquisition device. As we saw in Sec. 3.2, when we acquire
a scene with a pair of rectified cameras for a fixed target projection configuration
(b0, H 0,W 0), the depth perception function z0(z) from Eq. 3.33 has three degrees
of freedom: the convergence window width W , its distance H, and the acquisition
baseline b. If the director specifies more than three constraints, then we have an
overdetermined system.

In our case, the focal length of the first camera has been chosen by the director
to create the image frame. As we saw in Sec. 5.1.2.1, to acquire an element of the
scene with the same resolution with two di↵erent cameras, their focal lengths have
to follow the relationship of Eq. 5.4. In our case, as all cameras are at the same
distance of the element, all focal lengths have to be equal. It follows that the ratio
H
W is the same for all acquisition setups, and a first constraint of our system is
established. Only two degrees of freedom are left, and each couple of constraints
establishes an optimal camera setup to acquire the element.

One depth constraint z0(ze) = z0e together with a roundness constraint ⇢(ze) = ⇢e
fully constrain the acquisition setup. Similarly, if the convergence distance is kept
constant for all constraints (z0(H) = H 0) then only a depth or roundness constraint
fixes the acquisition baseline. Hence, we may potentially need as many acquisition
cameras as constraints. Although theoretically one could add a constraint on the
roundness of an element but not on its depth, we can not imagine a case where a
director would do that, as the whole process of the stereoscopic mise-en-scene is
based on how the elements are placed in depth.

Let us recall, that in Sec. 5.1.2.4 we observed that the obtained optimal baseline
to acquire the roundness of an element was the same baseline obtained according
the our IBR approach. Hence, both our IBR approach and a roundness factor
reasoning lead to the same baselines.
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a) b)

c)

Fig. 5.14: Images reproduced from Neumann (2011). The original image a) is annotated by the
director with pixel values describing the expected disparity in the final shot b). Artists model the
scene elements to create a final depth map c) allowing to create the stereoscopic pair.

5.2.2.1 Using Only Three Cameras: The Tri-Rig

For a generic scene containing many elements, it becomes unreasonable to use as
many cameras as depth constraints. But a scene with a low number of constraints
can be acquired with a small number of cameras. In our simplified scene layout with
two elements, a constraint for the depth and roundness of the subject of interest,
and a depth constraint on the background, result in a three camera configuration
that we call the “Tri-Rig”. The three cameras are placed as follows.

We choose the camera used by the director to establish the 2D frame as the left
most camera. Then, the second camera is chosen so that the subject of interest is
perceived at the desired depth (z0(zs) = z0s), and with the desired roundness factor
(⇢(zs) = ⇢s). For example, if the subject’s depth is set at the depth of the screen
and the desired roundness is ⇢s = 1, the obtained baseline between the first and
the second camera is

b
round

= b0
H

H 0 . (5.24)

This baseline also establishes the convergence window width and distance (W,H).

The third camera is placed so that its baseline with the first camera acquires the
background as required by the director, i.e. the perceived depth of the background
is the desired one. We name this baseline b

div

, as it is usually chosen to avoid
the ocular divergence arising with the roundness baseline bround. The convergence
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window width and distance (W,H) are chosen to be equal to the configuration
acquiring the subject. For example, if the director wants the background elements
at infinity to be perceived at infinity in the projection room, the obtained baseline
corresponds to the canonical setup:

b
div

= b0
W

W 0 . (5.25)

5.2.2.2 Generating the Final Stereoscopic Pair

Now that we have acquired the three (or more) images, we need to compose them
into a stereoscopic pair. The left most image created by the director is used as
the left image of the stereoscopic pair. Then we need to render the right image
corresponding to the director’s constraints: our target view.

The right image has to be rendered as the composition of the other images. In
the “Being on the field” approach, we had virtual cameras establishing the positions
and parameters of the cameras to render, but in this case we do not know where
the camera to be rendered is. Moreover, the image we want to render can not be
obtained with a standard pinhole camera, as the di↵erent constraints on the scene
elements result in di↵erent camera positions. Let us analyze the image formation
process of the desired right image.

We can describe the image formation process of the target view with the
composition of two functions. First, a function d(z) transforms scene depth values
z into disparity values d, and then a disparity mapping function �(d) (see Sec. 3.4.1)
transforms the image, so that an acquired disparity d is mapped into the desired
disparity �(d). Let us recall that �(d) is generally assumed to be increasing
monotonic, to avoid mapping farther objects of the scene in front of nearer objects
of the scene. The depth to disparity function can be defined with any director’s
constraints establishing an initial acquisition setting. We name this acquisition
setting the reference acquisition setup (br, Hr,Wr). It establishes the depth to
disparity mapping (see Sec. 3.1.6):

d(z) =
br
Wr

✓
1� Hr

z

◆
. (5.26)

Then, each supplementary constrain is taken into account by defining a control
point on the �(d) function. A depth constraint z0(ze) = z0e constrains �(d), whereas
a roundness constraint ⇢(ze) = ⇢e also constrains �(d) and �0(d) (see Sec. 3.4.1.4).
Note that a depth constraint plus a fixed convergence distance, fully constrain
the acquisition system. Thus, ⇢(ze) = ⇢e is also defined, which establishes a
constraint on �0(de). The constraint on the convergence distance and the following
constraint on �0(de) is usually imposed on the background elements of the scene.
Once all control points have been set, the final continuous function �(d) can be
computed with any interpolation technique exactly interpolating the control points
and its derivatives. To generate it we can use any linear (Pitié et al., 2012) or
non-linear operator (Lang et al., 2010), or even cubic splines. Transitions between
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operators should be smooth, so that �0(d) is properly defined for all disparity values.
Otherwise the roundness factor would not be defined at depths where �(d(z)) is
not di↵erentiable. Of course the shape of the disparity mapping function varies
depending on the reference acquisition setup. Let us illustrate two di↵erent �(d)
functions obtained with our “Tri-Rig” configuration.

If we choose the baseline b
div

as the reference, the depth of the background is
properly mapped to the desired disparity, but the roundness factor on the subject is
not the desired one. The goal of the disparity mapping function is to add roundness
at the subject of interest depth zs, i.e. to expand the disparities around the subject
disparity d(zs). The function �(d) must of course preserve the constraints on the
background, i.e. the values �(db) and �0(db). In Fig. 5.15 we illustrate the shape of
the obtained �(d) function.

Similarly, if we choose the b
round

as the reference baseline, the depth and round-
ness factor on the subject are properly acquired, but the disparity corresponding to
the background elements does not fulfill the background constraints. Elements at
the background depth have too high disparity values. In this case, the goal of the
disparity mapping function is to compress the disparities so that the background
disparities are mapped to the desired ones, i.e. �(db) and �0(db). In Fig. 5.16 we
illustrate the shape of the obtained �(d).

Once the reference baseline is chosen and the disparity mapping defined, we can
compute the warps from the input images into the target image.

5.2.2.3 Generic Warps with Disparity Mapping

The goal now is to establish the generic form of the backward warp map ⌧i
transforming a point x = (x, y, 1, z(x, y)�1) in the input image, into the point
u0 = (u0, v0, 1, d0) in the final image. We assume that we have a geometric proxy,
the camera matrices and the disparity mapping function. Thus we can establish
the correspondences between the input image and the target image.

We start by computing the 3D scene point p associated with x. As we did in

Sec. 4.5.2.1, we use the inverse of the reconstruction matrix P̃
�1

i of the camera i

relating both points: p = P̃
�1

i x. Then, we project p into the reference camera
point u = (u, v, 1, d) with the reconstruction matrix of the reference camera P̃ r.
Let us recall that in Sec. 4.5.2.1 we did not have a reference baseline and so we used
the reconstruction matrix associated to the normalized disparity mapping. In this
case we do have a reference baseline and the mapping between the depth of a scene
point and the disparity is given by Eq. 5.26. To obtain the reconstruction matrix
P̃ r we simply replace f, b,H,W with br, Hr,Wr in Eq. 3.25 and obtain

P̃ r =

0

BBBB@

H
r

W
r

0 0 0

0 H
r

W
r

0 0

0 0 1 0

0 0 b
r

W
r

�br
H

r

W
r

1

CCCCA
. (5.27)
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Fig. 5.15: Disparity mapping function �(d) expanding the disparity range near the zero disparity,
i.e. the subject of interest depth. Disparity values after the expansion are compressed and the
disparity values of the background are preserved.

The last step is to use the disparity mapping function �(d) = d0 to obtain the
desired point. We note as � (the vectorial version of �) the function displacing the
x-coordinate of the projected point u in the image. This transformation can be
written as

�(u) = (u+ �(d)� d, v, 1,�(d)). (5.28)

The backward warp map ⌧i transferring a point x in the image i into u0 in the

final view can be obtained as the composition of P̃
�1

i , P̃ r and �. As we did in

Sec. 4.5.2.1, we write the left product of P̃
�1

i with P̃ r as

T̃ i = P̃
�1

i P̃ r, (5.29)

and obtain
⌧i = � � T̃ i. (5.30)

The Forward Warp Map To compute the forward warp map �i = ⌧�1

i we need
�(u), i.e. �(d), to be invertible. Note that Lang et al. (2010) allowed multiple depth
values to be mapped to exactly the same target depth. By doing so the forward
warp map �i is not properly defined at this target depth. However, as disparity
values are in R, it is easy to impose a strict monotonic condition on �. In this same
work, Lang et al. (2010) propose to use the non-linear operator �(d) = log(1 + sd),
with s 2 R, to compress the disparity range, which is strictly increasing. Thus the
forward warp map �i is properly defined.

If �(d)�1 is defined, then �(d)�1 is also defined and the forward warp map �i of
a point in u0 is given by

x̃ = T̃
�1

i ��1(u0), (5.31)
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Fig. 5.16: Disparity mapping function �(d) compressing the disparity range for the background
values. Disparity values at the convergence depth are preserved.

where ��1(u0) is a 4-dimensional row vector, and T̃
�1

i a 4 ⇥ 4 matrix. To obtain
the final coordinates in the input image we need to normalize x̃ with the third
coordinate.

The Weights With the expressions of ⌧i and �i we can compute the terms
| detD�i| (and | detD�i|00) as well as @⌧

i

@z . The warps ⌧i and �i are the composition of
the expressions obtained in Sec. 4.5.2.1 with �. Thus to compute the derivatives, we
only have to apply the chain rule. The spatial derivatives from T̃ i can be computed
with the equations obtained in Sec. 4.5.2.3, and the derivatives with respect to
depth can be computed with the equations obtained in Sec. 4.5.2.2. Then we only
need to compute @�

@z and | detD�|. To compute @�
@z we use the relation between

depth and disparity given by Eq. 5.26 and to compute | detD�| we use that �(d) is
independent of the x and the y-coordinates. Thus we have all magnitudes needed
to compute the final images.

Let us point out, that the weights of the method proposed by Wanner and
Goldluecke (2012) can be computed as they rely on | detD�i|. However, at this
moment it is unclear how to compute the weights for the method proposed by
Buehler et al. (2001), as they rely on angles between optical rays which could be
a↵ected by the � function.

5.2.2.4 The World Distortion

The actual implementation of the forward and backward warps needs special
attention, as the occlusion handling in this process is delicate. In the backward warp
map ⌧i the position of the projected element u is modified by �. Two geometric
elements p

1

and p
2

projected at two di↵erent image locations u
1

and u
2

, may
have the same image coordinates after the disparity mapping warp. The element
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with a lower disparity value occludes the element with a higher disparity value.
The visibility test, also known as z-bu↵ering, should use the final disparity mapped
values d0 instead the depth of the element to the camera z.

Similarly, when computing the forward warp map �i, two image points u0
1

and
u0
2

, may be warped into points u
1

and u
2

having the same x- and y-coordinates.

Thus, to first warp the image and then apply T̃
�1

i can not be done by storing the
warped values in a classical single planar bu↵er. Some elements of the bu↵er will be
empty, whereas other elements will have multiple assignments. A special pipeline
should be implemented.

The occlusion handling in the render engines such as OpenGL (Woo et al., 1999)
has been optimized over the years for standard pinhole camera projections. Ideally,
we would like to take advantage of the actual rendering techniques. Hence we
propose not to apply the disparity mapping �(d) in the images, but to distort
the world accordingly with a function � : R3 ! R3 before the pinhole camera
projection. In Fig. 5.17 we illustrate a scheme of how � transforms a 3D point p
into p0. With this pipeline we can compute the desired image warps with a classic
depth occlusion handling, which is done by the rendering engine.

To compute � we first define � : R ! R which acts on the depth of a point. The
function z0 = �(z) is directly related to d0 = �(d) by the relation between depth and
disparity. We first convert the depth z into the disparity d, and then we disparity
map it into d0. To obtain the z0 value we reconstruct the mapped disparity. Both
depth to disparity and disparity to depth mappings are established by the reference
baseline, i.e. Eq. 5.26 and its inverse. Then, given a 3D point, if we transform its
depth with �, and project it, the final disparity of the projected point is d0. To
completely define �, we still have to define its x and y transformation to obtain a
coherent 3D distortion of the world. As the frame of the left camera is chosen by
the director, a natural constraint on �(p) is not to modify the projection of the
geometry into the left camera. This way, the image of the left camera is una↵ected
by the geometry distortion. With this constraint together with the depth mapping
function �(z), �(p) = p0 is fully defined. The distorted 3D scene point p0 lies on the
viewing ray pcl, where cl is the optical center of the left camera, and the amount

p

u u0

p0
�(p)

�(u)

˜Pr(p) ˜Pr(p0)

Fig. 5.17: The definition of � (p) as the equivalent world distortion creating the image warp
defined by � (u): � � ˜

P

r

=

˜

P

r

� �.
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by which the point p is displaced along the viewing ray is determined by �(z). In
Fig. 5.18 we illustrate a scheme of the proposed world distortion. In practice �(x)
can be e�ciently implemented with a vertex shader.

With the proposed world distortion, angles between the desired optical ray and
the input camera ray can be computed as illustrated in Fig. 5.19. Given a point
u0 on the reference image, its 3D point p0 in the distorted world can be computed.
Then the desired viewing ray is defined in the distorted world. This ray can be
undistorted with D��1 evaluated at the depth of p0. The undistorted ray can now
be compared to the ray between p and ci, where p is the undistorted version of p0,
and ci the optical center of the input view. The weights of the method proposed
by Buehler et al. (2001) can now be computed.

5.2.2.5 Visibility

By construction, the left view of the proposed “Tri-Rig” is the raw output from the
camera. No occlusion, other than an intruder-scene, may arise. However, occlusions
in the right final rendered view can arise. In Fig. 5.20 we illustrate how the subject
may occlude a region of the background needed in the final image.

As we saw in Sec. 5.7, if the subject or the background are not convex, the same
scheme from Fig. 5.20 applies for self-occlusions. If b

div

is chosen as the reference
baseline, then the world distortion modifies the subject of interest and the world
distortion may introduce self-occlusion regions. Similarly, if b

round

is chosen as the
reference baseline, and the background is not convex, self-occlusion areas may arise.

Although the needed texture may be acquired by another image of the “Tri-Rig”,
it is highly probable that some region of the final image is not visible by any other
view. As we discussed in Sec. 5.1.4, if the texture is not recovered by any of the
“Tri-Rig” cameras, a possible solution could be to use auxiliary cameras to acquire
the missing texture, or if no other cameras are available, then use an inpainting
method to fill the missing regions in the image.
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Fig. 5.18: The proposed world distortion �(p) as the composition of d(z), �(d) and z0(d0).
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Fig. 5.19: The Jacobian of the inverse of the proposed world distortion ��1 allows to undistort
viewing directions into the 3D world. Angles between optical rays from the distorted world and the
3D world can be computed. The viewing ray from the image point u0 intersects with the distorted
word at p0. The direction of the viewing ray can be undistorted, and then compared to the viewing
ray from the camera i in the 3D world. The angle between both rays is ↵.
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actual background

depth mapped background

subject

b
div

= ||cl � cb||
b
round

= ||cl � cr||
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Fig. 5.20: Example of subject-background occlusion. The roundness baseline is used as reference
baseline. The depth mapping reduces the depth of the background to decrease its disparity. A region
needed by the reference camera (red rectangle) is not acquired by the background camera. The
background camera at c

b

acquires the region of the background defined by the points p
i

(orange
rectangles). The points p

i

are mapped into p0
i

as well as the visible area (green rectangles). The
needed area of the background to render the final image is shown in blue. The red rectangle indicates
the region not acquired by the background camera.

5.2.3 Proof of Concept

In this section we present a proof of concept of the proposed approach. We created
a synthetic dataset with our simplified layout, where the ground truth geometry is
available. In Fig. 5.21 we illustrate the three rendered images of the dataset. We
used the baseline acquiring the subject of interest with the desired roundness factor
as the reference baseline. Thus the disparity mapping function �(d) had the shape
illustrated in Fig. 5.16. In Fig. 5.22 we show the world distortion created by the
corresponding �(x). The depth of the subject of interest is preserved, while the
background elements are pulled forward to decrease their disparity values on the
final image.

In Fig. 5.23 we show the final rendered images with the methods proposed by
Buehler et al. (2001), Wanner and Goldluecke (2012), as well as our IBR method.
Visually, the rendered images do not present any noticeable di↵erence. As the target
image does not correspond to any pinhole camera, we do not have a reference image
to compare with, and thus we can not numerically evaluate the obtained results.

a) b) c)

Fig. 5.21: The “tri-rig blender lego” dataset: a) and b) are the left and right images acquiring the
background. a) and c) are the left and right images acquiring the subject of interest.



5.2. Distort the World! 147

a) b)

c) d)

Fig. 5.22: The world distortion for the “tri-rig blender lego” dataset: a) and b) are views of the 3D
scene c) and d) are the same views of the distorted 3D scene. The background depth is compressed,
so that further elements create a smaller disparity in the final rendered image.

We discuss how our results could be evaluated in the next Section.

In Fig. 5.24 we show closeups of the regions in the rendered images, which are
not acquired by any source image. These regions are very small compared to the
large black areas obtained with the “Quadri-Rig” approach shown in Fig. 5.11.

5.2.3.1 Future Evaluation

We believe that a subjective evaluation of the obtained results should be conducted
in the future to assess the proposed approach. Of course the final quality of the
rendered images is strongly dependent on the geometric reconstruction, thus two
di↵erent experiments should be conducted to assess two di↵erent questions.

The first set of experiments should assess the validity of the proposed camera
model. Is the “Tri-Rig” capable to create compelling stereoscopic images with
the desired roundness factor on the subject and avoiding ocular divergence? The
groundtruth geometry should be used to generate the final images and avoid visual
artifacts created by a poor 3D reconstruction. The rendered images could be
compared to disparity mapping methods using two images such as Lang et al.
(2010), Yan et al. (2013) or Devernay and Duchêne (2010), which should of course
also benefit from the goundtruth reconstruction. Although we believe that the
generated images would be considered to contain less artifacts, specially in regions
where important occlusions arise, without the subjective experience we do not have
yet any proof.

The second set of experiments should be conducted with rendered images relying
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Rendered Image Di↵erence with ULR

Fig. 5.23: First column: the right final image, rendered with the di↵erent methods. First row is
rendered with Buehler et al. (2001) (ULR), second row is rendered with Wanner and Goldluecke
(2012), and the third row is rendered with our approach. Second column: di↵erence of the image
with ULR. No noticeable di↵erence is visible between the rendered images by the 3 methods.

a) b) c)

Fig. 5.24: Occluded regions in the “Tri-Rig” configuration. Very few pixels around depth
discontinuities are not acquired by any camera. a) and b) A few black occluded pixels are visible
around the hand of the lego models. c) The black triangular region in the center of the closeup is
not acquired by any camera.
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on computed depth values from the input images. The rendered images could be
compared to the disparity mapping state of the art techniques cited above. Thus
the actual implementation of the model would be evaluated.

An interesting comparison could be done with the stereoscopic images created
with two actual cameras using either the non-diverging baseline, or the roundness
factor baseline. As the acquired images do not contain any visual artifacts, users
should choose between the “cardboard e↵ect”, the ocular divergence or the proposed
images containing potentially visual artifacts.

In addition, it could be interesting to see how no-reference stereoscopic measures,
e.g. Akhter et al. (2010); Chen et al. (2013), correlate to the subjective evaluation.
While those methods can detect artifacts in the images and would be useful for the
second set of experiments, they do not account for “cardboard e↵ect” or ocular
divergence in the images. This is why we belief that a user study should be
conducted.

5.2.4 Tri-Rig Discussion

We presented the “Tri-Rig”, a camera model based on three cameras to create
stereoscopic images with perspective distortions of the acquired scene. To conclude
the “Tri-Rig” section we discuss how to handle inconsistent constraints, as well as
a followup question raised by the proposed world distortion.

5.2.4.1 Inconsistent Constraints

At the time of the constraints specification, the director may be unaware of the
actual depth of the scene elements, and some constraints may be incompatible with
each other. For example, two elements at the same actual depth may be constrained
to be at di↵erent depths in the final images. One way to address this problem is
to apply a di↵erent �(d) and �(z) depending on the location of the element in
the scene xe, i.e. �(xe) and �(xe). Transition areas between the di↵erent regions
should be handled carefully. On one hand, inconsistent monoscopic depth cues
could be easily in conflict, e.g. interposition or perspective. On the other hand, if
the disparity mapping function � depends on the spatial coordinates, the computed
weights described in Sec. 5.2.2.3 require that the derivatives @�

@x and @�
@y are properly

defined. Thus � should be defined as a continuous, di↵erentiable function.

5.2.4.2 IBR in Distorted Worlds

The multi-rig problem is known to be an IBR problem in a world were the optical
rays are not straight, as pointed out by Pinskiy et al. (2013). The IBR problem
in a world where the rays are not straight is, according to McMillan and Bishop
(1995), still a plenoptic sampling problem. The question reduces to identify which
ray needs to be reconstructed and how to reconstruct it from the available sampled
rays. However, a question arises: should the same desirable properties from Buehler



150 Chapter 5. The Stereoscopic Zoom

et al. (2001) prevail in a world were the optical rays are not straight? Moreover, if
the answer is “no”, which one of them and how should they be adapted?

In our approach we distorted the world to obtain straight viewing rays. This
way the occlusions are properly handled. However, the distorted world should not
be used to compute any metric values, such as angles or distances. Rendering
techniques such as illumination relying on metric values should not be computed in
the distorted world as they would lead erroneous results.

5.3 Discussion and Conclusion

We presented two di↵erent approaches to create stereoscopic images with long focal
lengths, each one of them guided by a di↵erent artistic intention of the director.
The first one allows the director to “get closer” to the scene while the second one
allows the director to create perspective distortions of the world. Each intention
has allowed us to deduce the corresponding camera model acquiring the needed
images. Let us compare the obtained camera models and discuss future lines of
investigation.

5.3.1 Tri-Rig vs. Quadri-Rig

Although the target images have a very di↵erent goal, in the sense of stereoscopic
mise-en-scene, we compare both camera models to highlight their advantages and
flaws.

One of the attractive features of the “Tri-Rig” with respect to the “Quadri-Rig”
is that one of the images, i.e. the left one, is acquired by a source camera. This is
an important advantage, as the perceived quality of a stereoscopic pair of images
is close (and sometimes equal) to the quality of the best of both images (Seuntiens
et al., 2006). Thus having the raw output of the camera as the left view provides
the highest quality possible. In the “Quadri-Rig”, both images are rendered, and
thus may contain visual artifacts.

Another advantage of the “Tri-Rig” with respect to the “Quadri-Rig” is the
visibility of the scene. As we illustrated in Fig. 5.7, large areas needed by the target
images of the “Quadri-Rig” may not be acquired by any of the four actual cameras.
In the “Tri-Rig” setup, only the right image may have image regions which are not
recovered by any camera. Moreover, as we illustrated in Fig. 5.20, these regions are
smaller than the regions shown in Fig. 5.7.

Although in this chapter we specialized the camera models to a scene with a
simple layout, composed of a subject of interest and a background, the proposed
camera models can be extended to scenes with more elements. For each new element
of the scene, the “Quadri-Rig” needs to be extended with 2 more cameras, whereas
the “Tri-Rig” only needs one more. As the focal length for all elements is the same,
the left camera of the new obtained camera setup acquiring the new element can
be set in the same exact position as the first left camera. We can summarize that
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given N elements of the scene, the “Quadri-Rig” has a complexity of 2N , while the
“Tri-Rig” has complexity N + 1.

Because of the advantages of the “Tri-Rig” with respect to the “Quadri-Rig”,
the director could also use the “Tri-Rig” with the intention to “get closer” to the
scene. The director could benefit from the advantages of the “Tri-Rig” and accept
the created perspective distortions to the scene. In this case, similarly to the use
of a zoom in 2D, the perspective distortion would be a consequence, but not the
intention.

5.3.2 Actual Implementation

The proposed camera models use either 3 or 4 cameras. Although the resulting
acquisition setup would be heavy and cumbersome, an actual implementation is
feasible in practice. Commercial stereoscopic rigs proposed for example by Binocle
(2015) and 3ality Technica (2015), allow to change the baseline between the cameras
as well as the focal length of the cameras. Motion control units allow to precisely
and synchronously control their focal length parameters as well as their positions.
Moreover, some multiview acquisition prototypes have been created for special
shootings, like for example the 4-camera rig used by Binocle to shoot “La France
entre ciel et mer” (France between sky and sea), or an 8-camera rig specially
designed to acquire images to be displayed on autostereoscopic devices (Prevoteau
et al., 2010). In Fig. 5.25 we reproduce images of these multiview prototypes, which
could be the starting point of an actual implementation of the proposed camera
models.

a) b)

Fig. 5.25: a) 4 camera rig used by Binocle in the shooting of “La France entre ciel et mer” (France
between sky and sea). b) 8 camera rig proposed by Prevoteau et al. (2010).

5.3.3 Autonomous Calibration and Depth Computation

Another advantage of the proposed system is that the acquired images have an
important overlap. This could allow to calibrate each camera with respect to the
others with an o✏ine method. The calibration data could be then embedded in the
motion control system driving the rig and retrieved in real-time.

In our proof of concept, the 3D reconstruction obtained with the pipeline
described in Sec. 4.5.1 provided poor results. Even though we used auxiliary
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cameras to help in the reconstruction process, the obtained results created
important visual artifacts shown in Fig. 5.13. One way to address this issue is
to aim at a specific reconstruction algorithm, specially tailored for the proposed
camera configurations. For example, for the “Quadri-Rig”, as each pair of cameras
has the same focal length, we could use stereo methods to compute two pairs of
disparity maps. Then both pairs of disparity maps could be further refined by
combining the overlap region in both pairs. For the “Tri-Rig”, as all cameras have
the same focal, disparity maps between each pair of images could be computed.
Then the trifocal tensor could be used to reject incoherent values and refine the
final result. This way, the depth of the scene could be significantly improved and
we could hope that most of the visual artifacts could be eliminated.

5.3.4 Future Evaluation

Future work should address the validation of the “Tri-Rig” generated images. As
we do not have a reference image to compare with, we were not capable to assess
the pertinence of the proposed camera model as well as the quality of the rendered
images with its actual implementation. It is our belief that a subjective user study
should be conducted to evaluate the proposed camera model.



6
Conclusion

6.1 Summary

In this thesis we studied how to create stereoscopic images with cameras using
a long focal length and contributed two camera models to the domain of “3D
cinematography” (Ronfard and Taubin, 2007, 2010). Each camera model follows a
di↵erent intention of the director to create a di↵erent stereoscopic e↵ect. The first
one, the “Quadri-Rig”, is driven by the intention to “get closer” to the scene. The
second one, the “Tri-Rig”, is initially driven by the intention to create perspective
distortions of the acquired scene, although it can also be used to “get closer” to the
scene.

We contributed a new visualization tool, the “virtual projection room”, allowing
to better understand the complex transformation between the acquired 3D scene
and the 3D scene perceived by the spectator in the projection room. With
the proposed tool, we illustrated the geometric distortions arising with di↵erent
acquisition and projection settings, e.g. the “cardboard e↵ect”. We then analyzed
how a change in the projection configuration could lead to important distortions.
We reviewed the state of the art techniques that address the problem of how to
adapt content created for a target projection configuration into a di↵erent projection
configuration. These techniques introduced the concept of disparity mapping, which
is a clever function targeting to reduce the distortions of the perceived depth. We
studied how the mathematical formalization of the constraints are a↵ected by the
disparity mapping function, and revisited the obtained acquisition configurations.
We furthermore analyzed the geometric distortions arising when using acquisition
cameras with long focal lengths. We saw the “cardboard e↵ect”, related to the
roundness factor of the perceived depth, as well as the ocular divergence, a major
cause of visual fatigue. We explained how the limitations of the existing state of
the art methods prevent them to obtain the desired results. In order to overcome
the limitations of the state of the art, we contributed two approaches to create
stereoscopic images with long focal lengths.

In chapter 4 we contributed a new IBR generative model capable of explaining
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most currently accepted intuitions of the state of the art in IBR (Buehler et al.,
2001), while retaining the advantage of the intrinsically parameter-free energies
arising from the Bayesian formalism (Wanner and Goldluecke, 2012). The key
theoretical contribution of the proposed method is the systematic modeling of the
error introduced in the Lambertian image formation process via the inaccuracy in
the estimates of the geometric proxy. We call this inaccuracy depth uncertainty,
referring to the depth estimates from the input images. We extensively analyzed the
theoretical implications of the obtained energy, discussing the formal deduction of
the state of the art heuristics from our model. This work contributes the first
Bayesian formulation explicitly deriving the heuristics of Buehler et al. (2001).
From a practical point of view, we numerically evaluated the performance of
our method for two cases. First we addressed a simplified camera configuration
where all viewpoints are in a common plane, which is parallel to all image planes.
This configuration is known as the Lumigraph (Gortler et al., 1996). For this
configuration we compared our results to the best existing method within the
Bayesian framework (Wanner and Goldluecke, 2012). In a second set of experiments
we dealt with the generic, unstructured configuration as proposed in Buehler et al.
(2001). For this configuration we implemented the generic extension of Wanner
and Goldluecke (2012) as well as the method proposed by Buehler et al. (2001),
and compared our results to both of them. Experimental results showed that
we achieve state of the art results with regard to objective measures on public
datasets. Moreover, we are also capable of addressing super-resolution, capitalizing
on the general framework established in Wanner and Goldluecke (2012). We also
described the main limitation of the proposed approach, which is the dependency
of the energy on the latent image u, and provided some hints on how future work
can address this limitation.

Finally, we used our generative IBR model to deduce two camera models, which
acquire the images allowing to create the desired stereoscopic e↵ect. We detailed
two di↵erent approaches to the stereoscopic mise-en-scene, leading to two di↵erent
stereoscopic intentions, and contributed two di↵erent camera models. Although
the proposed theoretical models can be applied to any generic scene, a complex
scene with many elements needs in theory to be acquired by a high number of
cameras. The resulting acquisition setup may result in practice in a complex and
cumbersome device. Hence, we focused on a simplified layout scene consisting of a
subject of interest and a background and deduced the corresponding camera models.
The first one, the “Quadri-Rig”, allowed to create images following the directors
intention to “get closer” to the scene. The second model, the “Tri-Rig”, allowed
to create perspective deformations of the acquired 3D scene to generate the desired
stereoscopic image by the means of the disparity mapping function. Because of the
advantages of the “Tri-Rig” with respect to the “Quadri-Rig”, the director could
also use the “Tri-Rig” with the intention to “get closer” to the scene, by accepting
that some perspective distortions would be added to the perceived scene. We saw
that for the simplified layout scene with a subject of interest and a background,
an actual implementation of both camera models can be implemented in practice.
We generated datasets which allowed us to experiment with the camera models.
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We observed two limitations in our approach, the occluded regions in the rendered
images and the dependency on a good geometric proxy. The occluded regions in
the rendered images are formed by the pixels which are not acquired by any actual
camera. Thus, we have no information to render these regions. While in the images
generated with the “Tri-Rig” the occluded regions are small, in the images generated
with the “Quadri-Rig” the occluded regions may contain a large number of pixels.
The second limitation is the dependency of the final quality of the rendered images
on a good geometric proxy. As we rely on a small number of cameras, if the quality
of the geometric proxy is poor, important visual artifacts appear in the final images.
To conclude, we discussed how future work can address this issue.

6.2 Future Work

To conclude the manuscript we provide directions on how to improve our three main
contributions, by improving the virtual projection room, the generative model, as
well as the camera models. We also give a hint on how methods taking our results
as an input could benefit from our computations to deduce an image uncertainty.

6.2.1 Improving the Virtual Projection Room

One of the contributions of the present work is the “virtual projection room”
presented in Sec. 3.3. The visualization of the perceived depth by the spectator in
the virtual projection room is purely based on the perceived depth from stereopsis.
While the prediction of depth from stereopsis is in most cases accurate (Held and
Banks, 2008), future work should address how monoscopic depth cues, conflicting
or inconsistent with stereoscopic depth cues, may bias the perceived depth from
stereopsis. For example, if we capture a baseball player throwing the ball into the
camera, the spectator may perceive the ball going out of the screen because of the
size increase in the image as the ball approaches the camera. Even if the depth
from stereopsis indicates that the ball should be perceived at the screen depth, the
audience may perceive it right in front of them. It would be interesting to study
how monoscopic depth cues can be integrated into the “virtual projection room” for
a more realistic perceived depth prediction. The human subjective factor and the
high number of depth cues involved in the process, makes this line of investigation
a very challenging and hard problem.

6.2.2 Improving the Generative Model

Our Bayesian approach to the IBR problem has a main limitation, which is the
dependency of the energy on the latent image u. On one hand it makes the
energy optimization process less straightforward, and on the other hand, the local
computation of ru may generate visual artifacts. In Sec. 4.5.7 we studied how
di↵erent possibilities could address the limitations. However, it remained unclear
how they could be justified in a formal way. Thus, in our opinion, the research of
better generative models should continue.
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6.2.2.1 Better Error Modeling

As we saw in Sec. 4.5.1.3, the per pixel uncertainty may not follow a normal
distribution, specially near an occlusion border where the measured depth values
switch from front to back depth values. In our computation of the per-pixel
uncertainty, we could easily verify if the observed depth distribution is normal,
or not. This information could be helpful to improve the geometric error modeling
in our approach. For example, one could try to model the error as a mixture
of Gaussian distributions, which could represent the front and back depth of
the occlusion border. Then, an input pixel could contribute its color to two
di↵erent image locations in the target image with a moderate weight, instead to
only contribute to one image location with a low weight due to the high depth
uncertainty.

6.2.2.2 Include the non-Lambertian Assumption

Another obvious lead for improvement would be to extend the generative model
to non-Lambertian scenes. Because the real world is non-Lambertian, it seems
crucial to include this assumption to increase the generality of the generative model.
However, in practice this may prove to be quite hard, as one would need to include
general BRDF and lighting information to correctly model the transformation
between input and novel views.

6.2.2.3 Work in the Gradient Domain

The continuity desirable property of Buehler et al. (2001), states that the
contribution of a pixel at the boundary of the field-of-view should smoothly fall to
zero. With the proposed generative model we could not find any evidence pointing in
this direction. Instead to focus on how the contribution of an image could diminish
along the visibility boundaries, future work could explore how the generative model
could be extended to be applied to the gradient domain, and thus directly overcome
the photometric inconsistencies between the images.

6.2.2.4 Time Coherence

In the present work we have not explicitly taken into account the time dimension,
and thus our model handles each temporal frame independently from the others.
The generative model could be extended to exploit the temporal coherence among
a sequence of images. Of course, instead to rely on a 3D geometric proxy, we
would need a 4D geometric proxy, including not only the 3D position of each scene
element and its uncertainty, but also is predicted displacement. This way, images
at di↵erent frames could contribute to the final view. Note that in the literature of
time interpolation, usually the blending weights are computed with heuristics which
still lack a formal deduction Lipski et al. (2010, 2014). A generative model taking
into account the time dimension could try to answer if an input camera closer in
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space and farther in time should be preferred over a camera farther in space but
closer in time.

6.2.3 Improving the Camera Models

6.2.3.1 Specific 3D Reconstruction Methods

Even though we used auxiliary cameras to help in the reconstruction process, the
3D reconstruction obtained with PMVS (Furukawa and Ponce, 2010) and Poisson
Reconstruction (Kazhdan et al., 2006) did not provide a good 3D reconstruction.
The images rendered with the “Quadri-Rig” using the computed 3D reconstruction
yielded poor results with important visual artifacts.

One way to address this issue would be to aim at a specific reconstruction
algorithm, specially tailored for the proposed camera configurations. For example,
for the “Quadri-Rig”, we could use stereo methods to compute two pairs of disparity
maps. Then the disparity maps could be refined by combining the overlap region in
both pairs. For the “Tri-Rig”, as all cameras have the same focal length, disparity
maps between each pair of images could be computed. Then the trifocal tensor
could be used to reject incoherent values and refine the final result. This way, the
depth of the scene could be significantly improved and we could hope that some of
the visual artifacts could be eliminated.

6.2.3.2 Tri-Rig Subjective Evaluation

The rendered image by the “Tri-Rig” approach does not correspond to any pinhole
camera. Thus, we did not have a reference image to compare with, and could not
numerically evaluate the obtained results. Although it would be interesting to see
how no-reference stereoscopic measures, e.g. Akhter et al. (2010); Chen et al. (2013),
evaluate the rendered images, those measures neither account for the “cardboard
e↵ect” nor ocular divergence in the images. This is why we belief that a user study
should be conducted.

A first set of experiments should asses the validity of the proposed camera model
by using the groundtruth geometric proxy of the scene. The experiments should
address the question: if the geometric proxy is perfect, do the desired images create
the expected stereoscopic e↵ect? Then, if the camera model is validated, a second
set of experiments should asses the quality of the rendered images by an actual
implementation. If the quality of the rendered images is poor, e↵orts should focus
on how to obtain a better 3D reconstruction.

6.2.3.3 Geometric Reconstruction aware Camera Models

When we deduced the camera models, we assumed the elements of the scene to be
punctual. It would be interesting to study how the obtained camera positions may
vary depending on the actual geometry of the acquired element.
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For example, an interesting application to that problem would be the camera
placement computation to acquire a scripted live performance. For example,
imagine a theater where a live performance takes place and the actual camera
placement is constrained. The decors as well as the actors could be approximated
by a geometric proxy, and, as the movements of the actors are scripted, their position
in space could be approximated. A director acquiring the performance could then
place the virtual cameras at any position, and with the proposed framework, the
positions and focal lengths of the actual cameras could be determined in order to
maximize the quality of the virtual shots.

6.2.4 Exploiting Image Uncertainty

While we propose to benefit from the uncertainty of the geometric proxy, we can
o↵er an uncertainty measure to any image processing technique taking our result as
an input, e.g. image inpainting or image compression algorithms. For each rendered
pixel we could easily compute two values: the sum of the weights of all contributing
cameras, and the color variance of the contributing views. The first value accounts
for how many cameras contribute to the pixel and in which “quality”, in terms
of resolution and angular deviation. The second accounts for the color variation
proposed by the input views. A high color variance arises in two cases. If the
observed geometric element is Lambertian, then the geometrical proxy (or the
camera calibration) must be wrong. The same 3D point projects onto pixels of
the input image which have di↵erent colors. The second possibility is that the
observed scene is not Lambertian, thus di↵erent cameras observing the geometry
from di↵erent angles observe di↵erent colors. In contrast to a high color variance,
a low color variance indicates that the observed scene has a Lambertian, coherent
geometry. Thus pixels with a low color variance and a high sum of weights should
be more likely to have the actual color of the scene.

This information could be useful, for example, to encoding algorithms. Specially
those aiming explicitly to 3D video encoding (Matsuyama et al., 2012) could benefit
from the color variance and the sum of weights information. The parts of the image
with a high sum and low variance are likely to have a high quality, the compression
algorithm could decide to compress them less. The parts of the image with high color
variance and low sum of weights are likely to include visual artifacts, the algorithm
could choose to apply a more aggressive compression to these image regions.



A
Dynamic Stereoscopic Previz

In this appendix we briefly present the Dynamic Stereoscopic Previz (Pujades et al.,
2014).

A.1 DSP Presentation

The goal of the simulator is to provide a Previsualization environment to the artists,
to “see their movie before they shoot it” (Proferes, 2008). The director and the
stereographer face an important question: how to set the acquisition parameters
e.g., baseline b, the focal length (f / W

H ) and convergence distance H, in order to
obtain the desired 3D e↵ect in the projection room. As we saw, this choice is di�cult
because the relationship between the 3D of the acquired scene and the perceived 3D
in the projection room is complex. In recent years, expert directors, stereographers
and researchers have proposed useful rules of thumb to overcome these di�culties,
by containing the acquisition parameters in a “3D safe zone”. For example the
1/30th rule states that ”the interaxial distance should be 1/30th of the distance from
the camera to the first foreground object” (Mendiburu, 2009). A more sophisticated
technique was proposed by Oskam et al. (2011), with an automatic stereoscopic
camera control, providing a safe experience while exploring a virtual world. While
these rules are very handy for safe filming, they happen to be also very limiting in
terms of 3D creativity. In order to create novel 3D narratives (Mendiburu, 2011),
some“not-so-safe” configurations should also be explored. Two main drawbacks
make this exploration di�cult. The first is that an actual exploration of stereoscopic
configurations involves expensive equipment and time-consuming experiences. The
second is that the director can not often see while shooting how the 3D shot will
look like in the final projection room. Because the perceived depth depends on
the size of the screen, one would ideally need a monitoring screen of the size of
the target screen. The Dynamic Stereoscopic Previz (DSP) is a video game where
the goal is to shoot a stereoscopic film. The user first models and animates a 3D
scene using Blender (2015). Then the user places a stereoscopic rig in the scene and
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adjust the shooting parameters at will (b,H,W ). The user also sets the parameters
of the virtual projection room (b0, H 0,W 0), and sees how the acquired images are
perceived by the spectator. The virtual projection room is updated in real-time, as
the user changes the shooting parameters.

A.2 DSP In Action

We tested our DSP tool during the shooting of a short stereoscopic movie. The
short movie “Endless Night” takes place in an apartment, which we re-created
(see Fig. A.1d). Based on the director’s storyboards, we created previz animations
for ten shots of the movie, one of which is presented in Fig. A.2. DSP takes as
input an annotated storyboard (see Fig. A.1 a, b, c). For each shot the storyboard
provides the first and the last frames, together with floor-plan view drawings of
the desired camera and actors movements. The storyboard also contains written
annotations on the desired stereoscopic mise-en-scene (shallow or deep shot, in front
or at the back of the screen). In order to show the di�culty of the stereoscopic
parameter setting, we present the panning shot, where the actress moves out of the
bedroom and enters the living room. The shot is challenging because the motion
of the camera introduces important changes on the acquired scene volume. The
movement of the actress also gives multiple choices to set the convergence distance.
Several stereoscopic choices are possible depending on the desired 3D e↵ect. DSP
allows to play with di↵erent stereoscopic configurations, by dynamically changing
the baseline b and the convergence distance H. In Fig. A.2 we present the action
recorded by DSP, as well as the actual rushes from a test shooting of the scene.
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a) b)

c) d)

Fig. A.1: a) First frame of the shot. b) Last frame of the shot. c) Floor-plan view with
director’s annotations showing camera and actors displacements. Traditional storyboards are useful
for placing actors and cameras, but provide little support for stereoscopic 3-D. We use them as input
for previz. d) Blender 3D model of the “Endless Night” apartment.
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Fig. A.2: Previz results for a panning shot. Columns show di↵erent times in the shot, arranged
chronologically from left to right. First row: acquisition view; second row: virtual projection room;
third row: previz results; bottom row: actual rushes. The actress enters the hall and the camera
pans to the left. The di�culty of this shot is to handle the transition from a narrow single subject
(the actress) with a small depth volume into a room with a bigger depth volume. The stereoscopic
parameters are dynamically adjusted across the shot to create the desired stereoscopic e↵ect.



B
Super-Resolved Generated Images

B.1 Results

We present the full resolution images corresponding to the closeups in Fig. 4.9
in Chapter 4 reproduced here as Fig. B.1. In Fig. B.2 to B.7, we show for each
data set the ground-truth image (if available), the disparity map used for novel
view synthesis, the view generated with the approach in Wanner and Goldluecke
(2012), as well as the view generated by the proposed method. Results of the
previous method where obtained using the public released implementation of the
code available at
http://sourceforge.net/projects/cocolib/.

http://sourceforge.net/projects/cocolib/
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Original Estimated disparity map

Previous Proposed

Previous Di↵ Proposed Di↵

Fig. B.2: Novel view of the Stanford gantry data set “Tarot” (fine configuration). Synthesized at
x1 resolution using the estimated disparity map.
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Original Estimated disparity map

Previous Proposed

Previous Di↵ Proposed Di↵

Fig. B.3: Novel view of the HCI gantry data set “Couple”. Synthesized at x1 resolution using the
estimated disparity map.
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Original Flat geometric proxy

Previous Proposed

Previous Di↵ Proposed Di↵

Fig. B.4: Novel view of the HCI raytraced data set “Buddha”. Synthesized at x1 resolution using
a plane in the center of the scene as geometric proxy.
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Original Flat geometric proxy

Previous Proposed

Previous Di↵ Proposed Di↵

Fig. B.5: Novel view of the HCI gantry data set “Maria”. Synthesized at x1 resolution using a
plane in the center of the scene as geometric proxy.
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Original Estimated disparity map

Previous Proposed

Previous Di↵ Proposed Di↵

Fig. B.6: Novel view of the HCI gantry data set “Still life”. Synthesized at x3 resolution using
the estimated disparity map.
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Original Estimated disparity map

Previous Proposed

Previous Di↵ Proposed Di↵

Fig. B.7: Novel view of the Stanford gantry data set “Truck”. Synthesized at x3 resolution using
the estimated disparity map.



C
Results from Unstructured Camera

Configurations

We present the full resolution images corresponding to the closeups in Fig. 4.15 in
chapter 4 reproduced here as Fig. C.1. The groundtruth target images is labeled
as “Original”, the results obtained by Wanner and Goldluecke (2012) are labeled
“SAVS”, the results obtained by Buehler et al. (2001) are labeled “ULR”, and our
results are labeled “Proposed”. G1, G3 stand for di↵erent geometric reconstructions
described in Sec. 4.5.3
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Prevoteau, J., Chalençon-Piotin, S., Debons, D., Lucas, L. and Remion,
Y. “Multiview shooting geometry for multiscopic rendering with controlled
distortion”. In International Journal of Digital Multimedia Broadcasting, 2010
(2010). doi:10.1155/2010/975674. 151

Proferes, N.T. Film Directing Fundamentals: see your film before shooting. Focal
press (2008). 159

Pujades, S., Boiron, L., Ronfard, R. and Devernay, F. “Dynamic
stereoscopic previz”. In “International Conference on 3D Imaging”, pages 1–8.
IEEE (2014). doi:10.1109/IC3D.2014.7032600. 38, 159

Pujades, S. and Devernay, F. “Viewpoint interpolation: Direct and variational
methods”. In “International Conference on Image Processing”, pages 5407–5411.
IEEE (2014). doi:10.1109/ICIP.2014.7026094. 107, 130

Pulli, K., Hoppe, H., Cohen, M., Shapiro, L., Duchamp, T. and Stuetzle,
W. “View-based rendering: Visualizing real objects from scanned range and
color data”. In J. Dorsey and P. Slusallek, editors, “Rendering Techniques”,
Eurographics, pages 23–34. Springer (1997). doi:10.1007/978-3-7091-6858-5 3.
62

Raskar, R. and Low, K.L. “Blending multiple views”. In “Pacific Conference
on Computer Graphics and Applications”, pages 145–153. IEEE (2002). doi:
10.1109/PCCGA.2002.1167848. 63, 92, 111

Reynolds, M., Dobos, J., Peel, L., Weyrich, T. and Brostow, G.J.
“Capturing time-of-flight data with confidence”. In “Conference on Computer
Vision and Pattern Recognition”, pages 945–952. IEEE (2011). doi:10.1109/
CVPR.2011.5995550. 65



Bibliography 191

Ronfard, R. and Taubin, G. “Introducing 3D Cinematography”. In Computer
Graphics and Applications, 27(3):18–20 (2007). doi:10.1109/MCG.2007.64. 2,
153

Ronfard, R. and Taubin, G. Image and geometry processing for 3-D
cinematography, volume 5. Springer Verlag, Geometry and Computing (2010). 2,
153

Roth, S. and Black, M.J. “Fields of experts: A framework for learning image
priors”. In “Conference on Computer Vision and Pattern Recognition”, volume 2,
pages 860–867. IEEE (2005). doi:10.1109/CVPR.2005.160. 73, 112

Sattler, T., Leibe, B. and Kobbelt, L. “SCRAMSAC: Improving RANSAC’s
e�ciency with a spatial consistency filter”. In “International Conference on
Computer Vision”, pages 2090–2097. IEEE (2009). doi:10.1109/ICCV.2009.
5459459. 42

Scharstein, D. and Szeliski, R. “A taxonomy and evaluation of dense two-frame
stereo correspondence algorithms”. In International Journal of Computer Vision,
47(1-3):7–42 (2002). doi:10.1023/A:1014573219977. 40

Seitz, S.M., Curless, B., Diebel, J., Scharstein, D. and Szeliski, R. “A
comparison and evaluation of multi-view stereo reconstruction algorithms”. In
“Conference on Computer Vision and Pattern Recognition”, volume 1, pages
519–528. IEEE (2006). doi:10.1109/CVPR.2006.19. 64

Seitz, S.M. and Dyer, C.R. “Photorealistic scene reconstruction by voxel
coloring”. In International Journal of Computer Vision, 35(2):151–173 (1999).
doi:10.1023/A:1008176507526. 64

Seuntiens, P., Meesters, L. and Ijsselsteijn, W. “Perceived quality of
compressed stereoscopic images: E↵ects of symmetric and asymmetric jpeg
coding and camera separation”. In Transactions on Applied Perception, 3(2):95–
109 (2006). doi:10.1145/1141897.1141899. 150

Shade, J., Gortler, S., He, L.W. and Szeliski, R. “Layered depth images”.
In “SIGGRAPH”, pages 231–242. ACM (1998). doi:10.1145/280814.280882. 58

Shahrokni, A., Mei, C., Torr, P. and Reid, I. “From visual query to visual
portrayal”. In “British Machine Vision Conference”, pages 117.1–117.10. BMVA
Press (2008). doi:10.5244/C.22.117. 64

Shamir, A. and Sorkine, O. “Visual media retargeting”. In “SIGGRAPH ASIA
Courses”, pages 11:1–11:13. ACM (2009). doi:10.1145/1665817.1665828. 43

Shan, Q., Jia, J. and Agarwala, A. “High-quality motion deblurring from a
single image”. In “SIGGRAPH”, pages 73:1–73:10. ACM (2008). doi:10.1145/
1399504.1360672. 73



192 Bibliography

Shibata, T., Kim, J., Ho↵man, D.M. and Banks, M.S. “The zone of comfort:
Predicting visual discomfort with stereo displays”. In Journal of vision, 11(8):11
(2011). doi:10.1167/11.8.11. 12, 14, 15, 32, 47

Shum, H.Y., Chan, S.C. and Kang, S.B. Image-based rendering. Springer
(2007). 55, 58, 98

Shum, H.Y. and He, L.W. “Rendering with concentric mosaics”. In
“SIGGRAPH”, pages 299–306. ACM (1999). doi:10.1145/311535.311573. 58

Sinha, S.N., Scharstein, D. and Szeliski, R. “E�cient high-resolution stereo
matching using local plane sweeps”. In “Conference on Computer Vision and
Pattern Recognition”, pages 1582–1589. IEEE (2014). doi:10.1109/CVPR.2014.
205. 42

Sinha, S.N., Steedly, D. and Szeliski, R. “Piecewise planar stereo for image-
based rendering”. In “International Conference on Computer Vision”, pages
1881–1888. IEEE (2009). doi:10.1109/ICCV.2009.5459417. 65

Smolic, A., Kimata, H. and Vetro, A. “Development of MPEG standards for
3D and free viewpoint video”. In “Three-Dimensional TV, Video, and Display
IV”, pages 60160R–60160R–12. SPIE (2005). doi:10.1117/12.631192. 61

Smolic, A. and McCutchen, D. “Report on 3DAV exploration of video-based
rendering technology in MPEG”. In Transactions on Circuits and Systems for
Video Technology, 14(3):348–356 (2004). doi:10.1109/TCSVT.2004.823395. 60

Smolic, A., Muller, K., Dix, K., Merkle, P., Kau↵, P. and Wiegand,
T. “Intermediate view interpolation based on multiview video plus depth for
advanced 3D video systems”. In “International Conference on Image Processing”,
pages 2448–2451. IEEE (2008). doi:10.1109/ICIP.2008.4712288. 43, 59

SMPTE. “SMPTE STANDARD 196m-2003 motion-picture film - indoor theater
and review room projection - screen luminance and viewing conditions”. http://
standards.smpte.org/content/st-196-2003/SEC1.body.pdf (2003). [Online;
accessed 14-August-2015]. 36

SMPTE. “Society of motion picture & television engineers”. http://www.smpte.
org/ (2015). [Online; accessed 23-September-2015]. 36

Snavely, N., Garg, R., Seitz, S.M. and Szeliski, R. “Finding paths through
the world’s photos”. In “SIGGRAPH”, pages 15:1–15:11. ACM (2008). doi:
10.1145/1399504.1360614. 59

Snavely, N., Seitz, S.M. and Szeliski, R. “Photo tourism: Exploring photo
collections in 3D”. In “SIGGRAPH”, pages 835–846. ACM (2006). doi:10.1145/
1141911.1141964. 59

Spottiswoode, R., Spottiswoode, N.L. and Smith, C. “Basic principles of
the three-dimensional film”. In Journal of the Society of Motion Picture and

http://standards.smpte.org/content/st-196-2003/SEC1.body.pdf
http://standards.smpte.org/content/st-196-2003/SEC1.body.pdf
http://www.smpte.org/
http://www.smpte.org/


Bibliography 193

Television Engineers, 59(4):249–286 (1952). doi:10.5594/J01778. 15, 26, 32, 35,
36, 49

Stich, T., Linz, C., Wallraven, C., Cunningham, D. and Magnor, M.
“Perception-motivated interpolation of image sequences”. In Transactions on
Applied Perception, 8(2):11:1–11:25 (2011). doi:10.1145/1870076.1870079. 59

Strecha, C., von Hansen, W., Gool, L.V., Fua, P. and Thoennessen, U.
“On benchmarking camera calibration and multi-view stereo for high resolution
imagery”. In “Conference on Computer Vision and Pattern Recognition”, pages
1–8. IEEE (2008). doi:10.1109/CVPR.2008.4587706. 100

Sun, G. and Holliman, N. “Evaluating methods for controlling depth perception
in stereoscopic cinematography”. In “Stereoscopic Displays and Applications
XX”, pages 72370I–72370I–12. SPIE (2009). doi:10.1117/12.807136. 35

Szeliski, R. Computer vision: algorithms and applications. Springer (2010). xi,
18, 20, 21, 22, 25

Takahashi, K. “Theory of optimal view interpolation with depth inaccuracy”. In
“European Conference on Computer Vision: Part IV”, pages 340–353. Springer
(2010). 63, 64

Takahashi, K. and Naemura, T. “Super-resolved free-viewpoint image synthesis
using semi-global depth estimation and depth-reliability-based regularization”.
In Y.S. Ho, editor, “Advances in Image and Video Technology”, pages 22–35.
Springer (2012). doi:10.1007/978-3-642-25367-6 3. 63, 92

Taneja, A., Ballan, L., Puwein, J., Brostow, G.J. and Pollefeys, M.
“3D reconstruction and video-based rendering of casually captured videos”. In
D. Cremers, M. Magnor, M.R. Oswald and L. Zelnik-Manor, editors, “Video
Processing and Computational Video”, pages 77–103. Springer (2011). doi:
10.1007/978-3-642-24870-2 4. 59

Tanimoto, M. “FTV (free-viewpoint television”. In Transactions on Signal and
Information Processing, 1(e4):454–461 (2012). doi:10.1017/ATSIP.2012.5. 60

THX. “THX”. http://www.thx.com/ (2015). [Online; accessed 23-September-
2015]. 36

THX. “THX certified cinema screen placement”. http://www.thx.

com/professional/cinema-certification/cinema-specifications/

thx-certified-cinema-screen-placement/ (2015a). [Online; accessed
14-August-2015]. 36

THX. “THX HDTV setup”. http://www.thx.com/consumer/

home-entertainment/home-theater/hdtv-set-up/ (2015b). [Online; accessed
14-August-2015]. 36

Todd, J.T. “The visual perception of 3D shape”. In Trends in Cognitive Sciences,
8(3):115 – 121 (2004). doi:10.1.1.89.5579. 7

http://www.thx.com/
http://www.thx.com/professional/cinema-certification/cinema-specifications/thx-certified-cinema-screen-placement/
http://www.thx.com/professional/cinema-certification/cinema-specifications/thx-certified-cinema-screen-placement/
http://www.thx.com/professional/cinema-certification/cinema-specifications/thx-certified-cinema-screen-placement/
http://www.thx.com/consumer/home-entertainment/home-theater/hdtv-set-up/
http://www.thx.com/consumer/home-entertainment/home-theater/hdtv-set-up/


194 Bibliography

Torralba, A. and Oliva, A. “Statistics of natural image categories”. In Network:
computation in neural systems, 14(3):391–412 (2003). 121

Triggs, B., McLauchlan, P.F., Hartley, R.I. and Fitzgibbon, A.W. “Bundle
adjustment – a modern synthesis”. In “International Workshop on Vision
Algorithms: Theory and Practice”, pages 298–372. Springer (2000). 85

Ukai, K. and Howarth, P.A. “Visual fatigue caused by viewing stereoscopic
motion images: Background, theories, and observations”. In Displays, 29(2):106–
116 (2008). doi:10.1016/j.displa.2007.09.004. 12

Vaish, V. and Adams, A. “The (New) Stanford Light Field Archive”. http:

//lightfield.stanford.edu (2008). [Online; accessed 14-August-2015]. 80

Vangorp, P., Chaurasia, G., La↵ont, P.Y., Fleming, R.W. and Drettakis,
G. “Perception of visual artifacts in image-based rendering of façades”. In
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